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Calculus of Computation
● Calculus: a set of symbols + rules for manipulating the symbols

○ e.g., Differential calculus: rules for manipulating integral symbols over a 

polynomial

● We may ask questions about computations

○ Does this program terminate?

○ Does this program output a sorted array for a given array?

○ Does this program access unallocated memory?

● We need a calculus to reason about computation to answer these questions.



Propositional Logic and First-Order Logic
● Also known as propositional calculus and predicate calculus 

● calculi for reasoning about propositions and predicates

● Propositions: statements that can be true or false

○ e.g., "It is raining", "2 + 2 = 4”

● Predicates: statements that can be true or false depending on the values given 

to them

○ e.g., "x is greater than 2", "y is a prime number" 



Syntax of Propositional Logic
● Syntax: a set of symbols and rules for combining them to form "sentences" of 

a language

● Truth symbols ￼ (true),  ￼  (false) are propositions.

● Propositional (or Boolean) variables: p, q, r, … are propositions.

● Logical connectives are used to combine propositions to construct 

propositions.

○ Negation: ¬ (not)                                 Conjunction: ∧ (and)

○ Disjunction: ∨ (or)                                Implication: ⇒ (implies)

⊤ ⊥

a ⇒ b ≡ ¬ a ∨ b



Syntax of Propositional Logic
● Atom: a truth symbol or a propositional variable

(¬ p ∧⊤) ∨ (q ⇒⊥)



Syntax of Propositional Logic
● Atom: a truth symbol or a propositional variable

● Literal: an atom or its negation  

(¬ p ∧⊤) ∨ (q ⇒⊥)



Syntax of Propositional Logic
● Atom: a truth symbol or a propositional variable

● Literal: an atom or its negation  

● Formula: a finite sequence of literals combined using logical connectives

(¬ p ∧⊤) ∨ (q ⇒⊥)



Semantics of Propositional Logic
● Semantics: rules for providing “meaning” to each sentence

● Meaning is given by the truth values (true and false)

● Rules: 

○ “⊤ means true”

○ “⊥ means false” 

○ “￼  means false” 

○ … 

● We cannot enumerate such rules for infinitely many propositions! 

● Also, meaning of a proposition varies depending on meaning of variables.

⊤ ∧ ⊥



Interpretation
● Interpretation ￼ for a formula ￼  maps every variable in ￼  to a truth value

○ e.g.,  ￼

● We write ￼  if ￼  is true under interpretation ￼.  

Otherwise, we write ￼

● Our goal: given a formula ￼  and an interpretation ￼,  decide if ￼  or ￼  

using finitely many rules.

I F F

I : {p ↦ true, q ↦ false}

I ⊧ F F I

I ⊧ F

F I I ⊧ F I ⊧ F



Semantics of Propositional Logic
● We define the meaning of basic elements first

○ ⊤ is true, ⊥ is false

○ a variable is true if it is assigned true, false if assigned false

● Assuming the meaning of a set of elements is fixed, define a more complex element in 

terms of these elements (￼  is more complex formula than the formulae ￼  or ￼ )

○ ￼  is true if ￼  is false, and vice versa

○ ￼  is true if both ￼  and ￼  are true

○ ￼  is true if at least one of ￼  or ￼  is true

○ ￼  is false only if ￼  is true and ￼  is false

F1 ∧ F2 F1 F2

¬F F

F1 ∧ F2 F1 F2

F1 ∨ F2 F1 F2

F1 ⇒ F2 F1 F2
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1.2 Semantics 7

I : {P !→ true, Q !→ false} .

To evaluate the truth value of F under I, construct the following table:

P Q ¬Q P ∧Q P ∨ ¬Q F

1 0 1 0 1 1

The top row is given by the subformulae of F . I provides values for the first
two columns; then the semantics of PL provide the values for the remainder
of the table. Hence, F evaluates to true under I. !

This tabular notation is convenient, but it is unsuitable for the predicate
logic of Chapter 2. Instead, we introduce an inductive definition of PL’s
semantics that will extend to Chapter 2. An inductive definition defines the
meaning of basic elements first, which in the case of PL are atoms. Then it
assumes that the meaning of a set of elements is fixed and defines a more
complex element in terms of these elements. For example, in PL, F1 ∧ F2 is a
more complex formula than either of the formulae F1 or F2.

Recall that we want to compute whether F has value true under inter-
pretation I. We write I |= F if F evaluates to true under I and I %|= F if
F evaluates to false. To start our inductive definition, define the meaning of
truth symbols:

I |= &
I %|= ⊥

Under any interpretation I, & has value true, and ⊥ has value false. Next,
define the truth value of propositional variables:

I |= P iff I[P ] = true

P has value true iff the interpretation I assigns P to have value true.
Since an interpretation assigns a truth value to every propositional vari-

able, I assigns false to P when I does not assign true to P . Thus, we can
instead define the truth values of propositional variables as follows:

I %|= P iff I[P ] = false

Since true %= false, both definitions yield the same (unique) truth values.
Having completed the base cases of our inductive definition, we turn to

the inductive step. Assume that formulae F , F1, and F2 have truth values.
From these formulae, evaluate the semantics of more complex formulae:

I |= ¬F iff I %|= F
I |= F1 ∧ F2 iff I |= F1 and I |= F2

I |= F1 ∨ F2 iff I |= F1 or I |= F2

I |= F1 → F2 iff, if I |= F1 then I |= F2

I |= F1 ↔ F2 iff I |= F1 and I |= F2, or I %|= F1 and I %|= F2
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8 1 Propositional Logic

In studying these definitions, it is useful to recall the earlier definitions given
by the truth tables, which are free of English ambiguities.

For implication, consider also the equivalent formulation

I !|= F1 → F2 iff I |= F1 and I !|= F2

The formula F1 → F2 has truth value true under I when either F1 is false
or F2 is true. It is false only when F1 is true and F2 is false. Our inductive
definition of the semantics of PL is complete.

Example 1.4. Consider the formula

F : P ∧Q → P ∨ ¬Q

and the interpretation

I : {P %→ true, Q %→ false} .

Compute the truth value of F as follows:

1. I |= P since I[P ] = true
2. I !|= Q since I[Q] = false
3. I |= ¬Q by 2 and semantics of ¬
4. I !|= P ∧Q by 2 and semantics of ∧
5. I |= P ∨ ¬Q by 1 and semantics of ∨
6. I |= F by 4 and semantics of →

We considered the distinct subformulae of F according to the subformula
ordering: F1 precedes F2 if F1 is a subformula of F2. In that order, we
computed the truth value of F from its simplest subformulae to its most
complex subformula (F itself).

The final line of the calculation deserves some explanation. According to
the semantics for implication,

I |= F1 → F2 iff, if I |= F1 then I |= F2

the implication F1 → F2 has value true when I !|= F1. Thus, line 5 is unnec-
essary for establishing the truth value of F . !

1.3 Satisfiability and Validity

We now consider a fundamental characterization of PL formulae.
A formula F is satisfiable iff there exists an interpretation I such that

I |= F . A formula F is valid iff for all interpretations I, I |= F . Determining
satisfiability and validity of formulae are important tasks in logic.

Satisfiability and validity are dual concepts, and switching from one to the
other is easy. F is valid iff ¬F is unsatisfiable. For suppose that F is valid;
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or F2 is true. It is false only when F1 is true and F2 is false. Our inductive
definition of the semantics of PL is complete.

Example 1.4. Consider the formula

F : P ∧Q → P ∨ ¬Q

and the interpretation

I : {P %→ true, Q %→ false} .

Compute the truth value of F as follows:

1. I |= P since I[P ] = true
2. I !|= Q since I[Q] = false
3. I |= ¬Q by 2 and semantics of ¬
4. I !|= P ∧Q by 2 and semantics of ∧
5. I |= P ∨ ¬Q by 1 and semantics of ∨
6. I |= F by 4 and semantics of →

We considered the distinct subformulae of F according to the subformula
ordering: F1 precedes F2 if F1 is a subformula of F2. In that order, we
computed the truth value of F from its simplest subformulae to its most
complex subformula (F itself).

The final line of the calculation deserves some explanation. According to
the semantics for implication,

I |= F1 → F2 iff, if I |= F1 then I |= F2

the implication F1 → F2 has value true when I !|= F1. Thus, line 5 is unnec-
essary for establishing the truth value of F . !

1.3 Satisfiability and Validity

We now consider a fundamental characterization of PL formulae.
A formula F is satisfiable iff there exists an interpretation I such that

I |= F . A formula F is valid iff for all interpretations I, I |= F . Determining
satisfiability and validity of formulae are important tasks in logic.

Satisfiability and validity are dual concepts, and switching from one to the
other is easy. F is valid iff ¬F is unsatisfiable. For suppose that F is valid;
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Satisfiability and Validity
● Q is satisfiable if and only if

● A satisfying interpretation of Q exists (i.e., I ⊧ Q for some I)

● Q is valid if and only if

● All interpretations of Q are satisfying (i.e., I ⊧ Q for all I)

● Otherwise, invalid (i.e., there exists I such that ￼ )

● Satisfiability and validity are dual

● “Q is valid” ≡ “¬ Q is unsatisfiable” 

I ⊧ Q



Methods for Deciding Satisfiability & Validity

● Truth-table method (a.k.a. proof by enumeration)

○ Enumerate all interpretations and check if a formula is satisfiable in every case

● Semantic argument method (a.k.a. proof by deduction)

○ Assuming the formula is invalid (i.e., there exists a falsifying interpretation ￼ 

such that ￼ , check if the assumption leads to a contradiction.

I
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1.3.2 Semantic Arguments

Our next approach to validity checking is the semantic argument method.
While more complicated than the truth-table method, we introduce it and
emphasize it throughout the remainder of the chapter because it is our only
method of evaluating the satisfiability and validity of formulae in Chapter 2.

A proof based on the semantic method begins by assuming that the given
formula F is invalid: hence, there is a falsifying interpretation I such that
I !|= F . The proof proceeds by applying the semantic definitions of the logical
connectives in the form of proof rules. A proof rule has one or more premises
(assumed facts) and one or more deductions (deduced facts). An application
of a proof rule requires matching the premises to facts already existing in the
semantic argument and then forming the deductions. The proof rules are the
following:

• According to the semantics of negation, from I |= ¬F , deduce I !|= F ; and
from I !|= ¬F , deduce I |= F :

I |= ¬F
I !|= F

I !|= ¬F
I |= F

• According to the semantics of conjunction, from I |= F ∧G, deduce both
I |= F and I |= G; and from I !|= F ∧ G, deduce I !|= F or I !|= G. The
latter deduction results in a fork in the proof; each case must be considered
separately.

I |= F ∧G
I |= F
I |= G

I !|= F ∧G
I !|= F | I !|= G

• According to the semantics of disjunction, from I |= F ∨G, deduce I |= F
or I |= G; and from I !|= F ∨ G, deduce both I !|= F and I !|= G. The
former deduction requires a case analysis in the proof.

I |= F ∨G
I |= F | I |= G

I !|= F ∨G
I !|= F
I !|= G

• According to the semantics of implication, from I |= F → G, deduce
I !|= F or I |= G; and from I !|= F → G, deduce both I |= F and I !|= G.
The former deduction requires a case analysis in the proof.

I |= F → G
I !|= F | I |= G

I !|= F → G
I |= F
I !|= G



Truth-Table Method
● Consider formula

● Truth table (0 corresponds to the value false, 1 to true)

● F is valid because it is true under every possible interpretation.
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then for any interpretation I, I |= F . By the semantics of negation, I !|= ¬F ,
so ¬F is unsatisfiable. Conversely, suppose that ¬F is unsatisfiable. For any
interpretation I, I !|= ¬F , so that I |= F by the semantics of negation. Thus,
F is valid.

Because of this duality between satisfiability and validity, we are free to
focus on either one or the other in the text, depending on which is more
convenient for the discussion. The reader should realize that statements about
one are also statements about the other.

In this section, we present several methods of determining validity and
satisfiability of PL formulae.

1.3.1 Truth Tables

Our first approach to checking the validity of a PL formula is the truth-table
method. We exhibit this method by example.

Example 1.5. Consider the formula

F : P ∧Q → P ∨ ¬Q .

Is it valid? Construct a table in which the first row is a list of the subformulae
of F ordered according to the subformula ordering. Fill columns of proposi-
tional variables with all possible combinations of truth values. Then apply the
semantics of PL to fill the rest of the table:

P Q P ∧Q ¬Q P ∨ ¬Q F

0 0 0 1 1 1
0 1 0 0 0 1
1 0 0 1 1 1
1 1 1 0 1 1

The final column, which represents the truth value of F under the possible
interpretations, is filled entirely with true. F is valid. !

Example 1.6. Consider the formula

F : P ∨Q → P ∧Q .

Construct the truth table:

P Q P ∨Q P ∧Q F

0 0 0 0 1
0 1 1 0 0
1 0 1 0 0
1 1 1 1 1

Because the second and third rows show that F can be false, F is invalid. !
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Truth-Table Method
● Consider formula

● Truth table

● F is invalid because the second and third rows are false.
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Semantic Argument Method
● Assume a formula is invalid, and check if it leads to a contradiction by applying 

proof rules.

● A proof rule has one or more premises (assumed facts) and deductions 

(deduced facts)

● Read as “If fact1, …, fact n are true, then fact’1, …, fact’ n are also true.  

Assumed fact1 , …, Assumed fact n


Deduced fact’1, … , Deduced fact’ n



Semantic Argument Method
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1.3.2 Semantic Arguments

Our next approach to validity checking is the semantic argument method.
While more complicated than the truth-table method, we introduce it and
emphasize it throughout the remainder of the chapter because it is our only
method of evaluating the satisfiability and validity of formulae in Chapter 2.

A proof based on the semantic method begins by assuming that the given
formula F is invalid: hence, there is a falsifying interpretation I such that
I !|= F . The proof proceeds by applying the semantic definitions of the logical
connectives in the form of proof rules. A proof rule has one or more premises
(assumed facts) and one or more deductions (deduced facts). An application
of a proof rule requires matching the premises to facts already existing in the
semantic argument and then forming the deductions. The proof rules are the
following:

• According to the semantics of negation, from I |= ¬F , deduce I !|= F ; and
from I !|= ¬F , deduce I |= F :

I |= ¬F
I !|= F

I !|= ¬F
I |= F

• According to the semantics of conjunction, from I |= F ∧G, deduce both
I |= F and I |= G; and from I !|= F ∧ G, deduce I !|= F or I !|= G. The
latter deduction results in a fork in the proof; each case must be considered
separately.

I |= F ∧G
I |= F
I |= G

I !|= F ∧G
I !|= F | I !|= G

• According to the semantics of disjunction, from I |= F ∨G, deduce I |= F
or I |= G; and from I !|= F ∨ G, deduce both I !|= F and I !|= G. The
former deduction requires a case analysis in the proof.

I |= F ∨G
I |= F | I |= G

I !|= F ∨G
I !|= F
I !|= G

• According to the semantics of implication, from I |= F → G, deduce
I !|= F or I |= G; and from I !|= F → G, deduce both I |= F and I !|= G.
The former deduction requires a case analysis in the proof.

I |= F → G
I !|= F | I |= G

I !|= F → G
I |= F
I !|= G
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• According to the semantics of iff, from I |= F ↔ G, deduce I |= F ∧G or
I #|= F ∨ G; and from I #|= F ↔ G, deduce I |= F ∧ ¬G or I |= ¬F ∧ G.
Both deductions require considering multiple cases.

I |= F ↔ G
I |= F ∧G | I #|= F ∨G

I #|= F ↔ G
I |= F ∧ ¬G | I |= ¬F ∧G

• Finally, a contradiction occurs when following the above proof rules results
in the claim that an interpretation I both satisfies a formula F and does
not satisfy F .

I |= F
I #|= F
I |= ⊥

Before explaining proofs in more detail, let us see several examples.

Example 1.7. To prove that the formula

F : P ∧Q → P ∨ ¬Q

is valid, assume that it is invalid and derive a contradiction. Thus, assume
that there is a falsifying interpretation I of F (such that I #|= F ). Then,

1. I #|= P ∧Q → P ∨ ¬Q assumption
2. I |= P ∧Q by 1 and semantics of →
3. I #|= P ∨ ¬Q by 1 and semantics of →
4. I |= P by 2 and semantics of ∧
5. I |= Q by 2 and semantics of ∧
6. I #|= P by 3 and semantics of ∨
7. I #|= ¬Q by 3 and semantics of ∨
8. I |= Q by 7 and semantics of ¬

Lines 4 and 6 contradict each other, so that our assumption must be wrong:
F is actually valid.

We can end the proof as soon as we have a contradiction. For example,

1. I #|= P ∧Q → P ∨ ¬Q assumption
2. I |= P ∧Q by 1 and semantics of →
3. I #|= P ∨ ¬Q by 1 and semantics of →
4. I |= P by 2 and semantics of ∧
5. I #|= P by 3 and semantics of ∨

This argument is sufficient because a contradiction already exists. In other
words, the discovered contradiction closes the one branch of the proof. We
sometimes note the contradiction explicitly in the proof:

6. I |= ⊥ 4 and 5 are contradictory

!

Contradiction!

ORAND



AND-OR Tree
● We will use an and-or tree as a graphical representation of a proof. 

● The following tree represents  

 

“If (Q and R) or S, then P” 

“If T or U, then Q”



Semantic Argument Method
● To prove formula                                  is valid, assume it is invalid and derives 

a contradiction (then, the assumption is wrong, which means F is valid). 
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10ba. I |= ⊥ 8b and 9ba are contradictory

In the second case,

9bb. I |= R by 7 and semantics of →
10bb. I |= ⊥ 5 and 9bb are contradictory

All three branches of the proof are closed: F is valid. !

We introduce vocabulary for discussing semantic proofs. The reader need
not memorize these terms now; just refer to them as they are used. A line
L : I |= F or L : I #|= F is a single statement in the proof, sometimes labeled
as in the examples. A line L is a direct descendant of a parent M if L is
directly below M in the proof. L is a descendant of M if M is L itself, if L is
a direct descendant of M , or if the parent of L is a descendant of M (in other
words, descendant is the reflexive and transitive closure of direct descendant).
M is an ancestor of L if L is a descendant of M . Several proof rules — the
second conjunction rule, the first disjunction rule, the first implication rule,
and both rules for iff — produce a fork in the argument, as the last example
shows. A proof thus evolves as a tree rather than linearly. A branch of the
tree is a sequence of lines descending from the root. A branch is closed if it
contains a contradiction, either explicitly as I |= ⊥ or implicitly as I |= G
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Contradiction!
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Checking Satisfiability is Hard
● Boolean satisfiability problem (SAT) : for a given formula, determine if there 

exists an interpretation that makes the formula true

● NP-complete 

○ NP: a class of problems that are solvable in polynomial time when you are 

very lucky (P: a class of problems that are always solvable in polynomial time)

○ NP-complete: hardest ones in NP

○ general SAT algorithms are probably exponential in time 



Semantic Equivalence
● Two formulas ￼  and ￼  are equivalent if they evaluate to the same truth value 

under all interpretations. 

● In other words, ￼  is valid (in short ￼ )

○ ￼

○ ￼

F1 F2

(F1 ⟹ F2) ∧ (F2 ⟹ F1) F1 ⇔ F2

1.4 Equivalence and Implication 15

Example 1.11. To prove that

P ⇔ ¬¬P ,

we prove that

P ↔ ¬¬P

is valid via a truth table:

P ¬P ¬¬P P ↔ ¬¬P

0 1 0 1
1 0 1 1

!

Example 1.12. To prove

P → Q ⇔ ¬P ∨Q ,

we prove that

F : P → Q ↔ ¬P ∨Q

is valid via a truth table:

P Q P → Q ¬P ¬P ∨Q F

0 0 1 1 1 1
0 1 1 1 1 1
1 0 0 0 0 1
1 1 1 0 1 1

!

Formula F1 implies formula F2 if I |= F2 for every interpretation I such
that I |= F1. Another way to state that F1 implies F2 is to assert the validity
of the formula F1 → F2. We write F1 ⇒ F2 when F1 implies F2. Do not
confuse the implication F1 ⇒ F2, which asserts the validity of F1 → F2, with
the PL formula F1 → F2, which is constructed using the logical operator →.
F1 ⇒ F2 is not a formula.

As with equivalences, we use the validity characterization to prove impli-
cations.

Example 1.13. To prove that

R ∧ (¬R ∨ P ) ⇒ P ,

we prove that
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Normal Forms
● A normal form of formulae is a syntactic restriction such that for every formula of 

the logic, there is an equivalent formula in the normal form. 

● Three important normal forms for propositional logic:

○ Negation Normal Form (NNF)

○ Disjunctive Normal Form (DNF)

○ Conjunctive Normal Form (CNF)



Negation Normal Form (NNF)
● NNF requires that ¬, ∧, and ∨ be the only connectives and that negations 

appear only in literals. First step before converting to other normal forms

● Transforming into an NNF form can be done using the following equivalences:

● For transformation, the equivalences should be applied left-to-right.

1.6 Normal Forms 19

Negation normal form (NNF) requires that ¬, ∧, and ∨ be the only
connectives and that negations appear only in literals. Transforming a formula
F to equivalent formula F ′ in NNF can be computed recursively using the
following list of template equivalences:

¬¬F1 ⇔ F1

¬$ ⇔ ⊥
¬⊥ ⇔ $

¬(F1 ∧ F2) ⇔ ¬F1 ∨ ¬F2

¬(F1 ∨ F2) ⇔ ¬F1 ∧ ¬F2

F1 → F2 ⇔ ¬F1 ∨ F2

F1 ↔ F2 ⇔ (F1 → F2) ∧ (F2 → F1)

When implementing the transformation, the equivalences should be applied
left-to-right. The equivalences

¬(F1 ∧ F2) ⇔ ¬F1 ∨ ¬F2 ¬(F1 ∨ F2) ⇔ ¬F1 ∧ ¬F2

are known as De Morgan’s Law.
Propositions 1.15 and 1.17 justify that the result of applying the template

equivalences to a formula produces an equivalent formula. The transitivity of
equivalence justifies that this equivalence holds over any number of transfor-
mations: if F ⇔ G and G⇔ H , then F ⇔ H .

Example 1.20. To convert the formula

F : ¬(P → ¬(P ∧Q))

into NNF, apply the template equivalence

F1 → F2 ⇔ ¬F1 ∨ F2 (1.1)

to produce

F ′ : ¬(¬P ∨ ¬(P ∧Q)) .

Let us understand this “application” of the template equivalence in detail.
First, apply variable substitution

σ1 : {F1 (→ P, F2 (→ ¬(P ∧Q)}

to the valid template formula of equivalence (1.1):

(F1 → F2 ↔ ¬F1 ∨ F2)σ1 : P → ¬(P ∧Q) ↔ ¬P ∨ ¬(P ∧Q) .

Proposition 1.17 implies that the result is valid. Then construct substitution

σ2 : {P → ¬(P ∧Q) (→ ¬P ∨ ¬(P ∧Q)} ,
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QUIZ
● Convert the formula                                                to NNF.
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Disjunctive Normal Form (DNF)
● A formula is in disjunctive normal form (DNF) if it is a disjunction of 

conjunctions of literals:

● For conversion, use the following equivalences:

20 1 Propositional Logic

and apply Proposition 1.15 to Fσ2 to yield that

F ′ : ¬(¬P ∨ ¬(P ∧Q))

is equivalent to F . Subsequently, we shall not provide these details.
Continuing with the conversion to NNF, apply De Morgan’s law

¬(F1 ∨ F2) ⇔ ¬F1 ∧ ¬F2

to produce

F ′′ : ¬¬P ∧ ¬¬(P ∧Q) .

Apply

¬¬F1 ⇔ F1

twice to produce

F ′′′ : P ∧ P ∧Q ,

which is in NNF and equivalent to F . !

A formula is in disjunctive normal form (DNF) if it is a disjunction
of conjunctions of literals:
∨

i

∧

j

"i,j for literals "i,j .

To convert a formula F into an equivalent formula in DNF, transform F into
NNF and then use the following table of template equivalences:

(F1 ∨ F2) ∧ F3 ⇔ (F1 ∧ F3) ∨ (F2 ∧ F3)
F1 ∧ (F2 ∨ F3) ⇔ (F1 ∧ F2) ∨ (F1 ∧ F3)

Again, when implementing the transformation, the equivalences should be
applied left-to-right. The equivalences simply say that conjunction distributes
over disjunction.

Example 1.21. To convert

F : (Q1 ∨ ¬¬Q2) ∧ (¬R1 → R2)

into DNF, first transform it into NNF

F ′ : (Q1 ∨Q2) ∧ (R1 ∨R2) ,

and then apply distributivity to obtain

F ′′ : (Q1 ∧ (R1 ∨R2)) ∨ (Q2 ∧ (R1 ∨R2)) ,

and then distributivity twice again to produce

F ′′′ : (Q1 ∧R1) ∨ (Q1 ∧R2) ∨ (Q2 ∧R1) ∨ (Q2 ∧R2) .

F ′′′ is in DNF and is equivalent to F . !

20 1 Propositional Logic
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Disjunctive Normal Form (DNF)
● Deciding satisfiability of a DNF formula is trivial.  Why?

○ Given ￼ , find one clause ￼  that is satisfiable

○ Each clause is of form ￼

○ A clause is satisfiable if there is no contradiction (e.g., ￼ ) 

○ This can be done in linear time per clause. 

● Complexity : O(size of formula)

C1 ∨ C2 ∨ ⋯ ∨ Cn Ci

l1 ∧ l2⋯ ∧ lm
A ∧ ¬A

for clause in disjuncts:

    if clause is internally consistent:

        return SAT

return UNSAT



Disjunctive Normal Form (DNF)
● Why don’t we just convert formula to DNF and do the simple check?

○ Then, can checking satisfiability be done in linear time?

● No because of the exponential blowup! 

○ A formula ￼  is in DNF:   

￼

○ Whenever we distribute, formula size doubles! 

● Checking satisfiability by converting to DNF is almost as bad as truth tables.

(F1 ∨ F2) ∧ (F3 ∨ F4)

(F1 ∧ F3) ∨ (F1 ∨ F4) ∨ (F2 ∧ F3) ∨ (F2 ∧ F4)



Conjunctive Normal Form (CNF)
● A formula is in conjunctive normal form (CNF) if it is a conjunction of 

disjunction of literals:

● For conversion, use the following equivalences
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The dual of DNF is conjunctive normal form (CNF). A formula in
CNF is a conjunction of disjunctions of literals:

∧

i

∨

j

!i,j for literals !i,j .

Each inner block of disjunctions is called a clause. To convert a formula F
into an equivalent formula in CNF, transform F into NNF and then use the
following table of template equivalences:

(F1 ∧ F2) ∨ F3 ⇔ (F1 ∨ F3) ∧ (F2 ∨ F3)
F1 ∨ (F2 ∧ F3) ⇔ (F1 ∨ F2) ∧ (F1 ∨ F3)

Example 1.22. To convert

F : (Q1 ∧ ¬¬Q2) ∨ (¬R1 → R2)

into CNF, first transform F into NNF:

F ′ : (Q1 ∧Q2) ∨ (R1 ∨R2) .

Then apply distributivity to obtain

F ′′ : (Q1 ∨R1 ∨R2) ∧ (Q2 ∨R1 ∨R2) ,

which is in CNF and equivalent to F . !

1.7 Decision Procedures for Satisfiability

Section 1.3 introduced the truth-table and semantic argument methods for
determining the satisfiability of PL formulae. In this section, we study al-
gorithms for deciding satisfiability (see Section 2.6 for a formal discussion of
decidability). A decision procedure for satisfiability of PL formulae reports,
after some finite amount of computation, whether a given PL formula F is
satisfiable.

1.7.1 Simple Decision Procedures

The truth-table method immediately suggests a decision procedure: construct
the full table, which has 2n rows when F has n variables, and report whether
the final column, representing F , has value 1 in any row.

The semantic argument method also suggests a decision procedure. The
basic idea is to make sure that a proof rule is only applied to each line in
the argument at most once. Because each deduction is simpler in construction
than its premise, the constructed proof is of finite size (see Chapter 4 for
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Conjunctive Normal Form (CNF)
● Solving CNF is not as easy as solving DNF. 

● Conversion to CNF does not explode as DNF. 

○ Many formulas that would be very large in DNF can be small in CNF.

● SAT solvers use CNF as their input language.

○ CNF gives a uniform input format for solvers.

○ DIMACS (standard SAT input format)



Conversion to an Equisatisfiable Formula in CNF

● Two formulas F and G are equisatisfiable if they are both satisfiable or both 

unsatisfiable.

● Tseitin’s transformation converts a formula F into an equisatisfiable CNF 

formula with only a linear increase in size.



Tseitin’s Transformation
● For example, given ￼

● For every sub formula G of F (unless G is an atom), introduce a new variable 

representing G

○ ￼

○ ￼

● Formula: ￼

F : x ⟹ (y ∧ z)

v1 ⇔ (x ⟹ v2)

v2 ⇔ (y ∧ z)

v1 ∧ (v1 ⇔ (x ⟹ v2)) ∧ (v2 ⇔ (y ∧ z))



Tseitin’s Transformation (contd.)
● Convert each ￼  into CNF 

○ ￼   ➞ ￼  

➞ ￼   

➞ ￼  

➞ ￼

○ ￼  ➞ ￼   

➞ ￼  

● Final result:  

￼ ￼  ￼  ￼  

vi ⇔ G

(v1 ⟹ ¬x ∨ v2) ∧ (¬x ∨ v2 ⟹ v1) (¬v1 ∨ ¬x ∨ v2) ∧ (¬(¬x ∨ v2) ∨ v1)

(¬v1 ∨ ¬x ∨ v2) ∧ (¬(¬x ∨ v2) ∨ v1)

(¬v1 ∨ ¬x ∨ v2) ∧ ((x ∧ ¬v2) ∨ v1)

(¬v1 ∨ ¬x ∨ v2) ∧ (x ∨ v1) ∧ (¬v2 ∨ v1)

(v2 ⟹ y ∧ z) ∧ (y ∧ z ⟹ v2) (¬v2 ∨ y ∧ z) ∧ (¬(y ∧ z) ∨ v2)

(¬v2 ∨ y ∧ z) ∧ (¬y ∨ ¬z ∨ v2)

v1 ∧ (¬v1 ∨ ¬x ∨ v2) ∧ (x ∨ v1) ∧ (¬v2 ∨ v1) ∧ (¬v2 ∨ y ∧ z) ∧ (¬y ∨ ¬z ∨ v2)



DPLL Algorithm
● The two naive methods for satisfiability 

○ Truth-table method (a.k.a. proof by enumeration)

○ Semantic argument method (a.k.a. proof by deduction)

● DPLL algorithm combines enumeration and deduction in an effective way. 

● Any given formula is transformed into CNF before fed into the DPLL algorithm.



Unit Resolution
● Suppose we have two clauses ￼  and ￼  that share a variable ￼  but disagrees on 

its value (e.g., ￼  contains ￼  and ￼  contains ￼ )

● Either the rest of ￼  or the rest of ￼  must be satisfied.

○ If ￼  is true, literals other than ￼  in ￼  should be true

○ If ￼  is false, literals other than ￼  in ￼  should be true

C1 C2 P

C1 P C2 ¬P

C1 C2

P ¬P C2

P P C1



Unit Resolution (contd.)
● More formally, suppose we have two clauses ￼  and ￼  that share a variable ￼  

such that  

￼   and ￼

● Then, unit resolution is stated as the following rule: 

C1 C2 P

C1 = α1 ∨ ⋯ ∨ αn ∨ P C2 = β1 ∨ ⋯ ∨ βm ∨ ¬P

￼α1 ∨ ⋯ ∨ αn ∨ P ￼β1 ∨ ⋯ ∨ βm ∨ ¬P

￼α1 ∨ ⋯ ∨ αn ∨ β1 ∨ ⋯ ∨ βm



Example
Suppose we have 

From resolution 

We construct 

From resolution

F is unsatisfiable.
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En(R1) = !
En(R2) = !

En(R1 ∧R2) = (¬P(R1∧R2) ∨R1) ∧ (¬P(R1∧R2) ∨R2)
∧ (¬R1 ∨ ¬R2 ∨ P(R1∧R2))

En(F ) = (¬P(F ) ∨ P(Q1∧Q2) ∨ P(R1∧R2))
∧ (¬P(Q1∧Q2) ∨ P(F ))
∧ (¬P(R1∧R2) ∨ P(F ))

Then

F ′ : P(F ) ∧
∧

G∈SF

En(G)

is equisatisfiable to F and is in CNF. !

1.7.4 The Resolution Procedure

The next decision procedure that we consider is based on resolution and
applies only to PL formulae in CNF. Therefore, the procedure of Section
1.7.3 must first be applied to the given PL formula if it is not already in CNF.

Resolution follows from the following observation of any PL formula F in
CNF: to satisfy clauses C1[P ] and C2[¬P ] that share variable P but disagree
on its value, either the rest of C1 or the rest of C2 must be satisfied. Why? If
P is true, then a literal other than ¬P in C2 must be satisfied; while if P is
false, then a literal other than P in C1 must be satisfied. Therefore, the clause
C1[⊥] ∨ C2[⊥], simplified according to the template equivalences of Exercise
1.2, can be added as a conjunction to F to produce an equivalent formula still
in CNF.

Clausal resolution is stated as the following proof rule:

C1[P ] C2[¬P ]
C1[⊥] ∨C2[⊥]

From the two clauses of the premise, deduce the new clause, called the resol-
vent.

If ever ⊥ is deduced via resolution, F must be unsatisfiable since F ∧⊥ is
unsatisfiable. Otherwise, if every possible resolution produces a clause that is
already known, then F must be satisfiable.

Example 1.26. The CNF of (P → Q) ∧ P ∧ ¬Q is the following:

F : (¬P ∨Q) ∧ P ∧ ¬Q .

From resolution

(¬P ∨Q) P
Q

,
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(¬P ∨Q) P
Q

,
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construct

F1 : (¬P ∨Q) ∧ P ∧ ¬Q ∧ Q .

From resolution

¬Q Q
⊥ ,

deduce that F , and thus the original formula, is unsatisfiable. !

Example 1.27. Consider the formula

F : (¬P ∨Q) ∧ ¬Q .

The one possible resolution

(¬P ∨Q) ¬Q
¬P

yields

F1 : (¬P ∨Q) ∧ ¬Q ∧ ¬P .

Since no further resolutions are possible, F is satisfiable. Indeed,

I : {P $→ false, Q $→ false}

is a satisfying interpretation. A CNF formula that does not contain the clause
⊥ and to which no more resolutions can be applied represents all possible
satisfying interpretations. !

1.7.5 DPLL

Modern satisfiability procedures for propositional logic are based on the Davis-
Putnam-Logemann-Loveland algorithm (DPLL), which combines the space-
efficient procedure of Section 1.7.2 with a restricted form of resolution. We
review in this section the basic algorithm. Much research in the past decade
has advanced the state-of-the-art considerably.

Like the resolution procedure, DPLL operates on PL formulae in CNF.
But again, as the procedure decides satisfiability, we can apply the conversion
procedure of Section 1.7.3 to produce a small equisatisfiable CNF formula.

As in the procedure sat, DPLL attempts to construct an interpretation of
F ; failing to do so, it reports that the given formula is unsatisfiable. Rather
than relying solely on enumerating possibilities, however, DPLL applies a
restricted form of resolution to gain some deductive power. The process of
applying this restricted resolution as much as possible is called Boolean con-
straint propagation (BCP).
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restricted form of resolution to gain some deductive power. The process of
applying this restricted resolution as much as possible is called Boolean con-
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DPLL Algorithm
● The process of applying unit resolution as much as possible (i.e., until no more 

resolution is possible) is called Boolean constraint propagation (BCP). 

● The DPLL algorithm (return true : SAT, return false : UNSAT):

function DPLL (F) { 

    F’ = BCP(F);

    if F’ = ⊤ then return true 


    else if F’ = ⊥ then return false 


    else 

        P = Choose_var(F’);

        return (DPLL(F’{P ↦ ⊤}) or DPLL(F’{P ↦ ⊥})) 

}

Replace every 
occurrence of P in F’ 

with ￼⊥



DPLL Example
● Consider 
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F

(R) ∧ (¬R) ∧ (P ∨ ¬R) (¬P ∨ R)

¬P

⊥ I : {P $→ false, Q $→ false, R $→ true}

Q $→ &

R (¬R)
⊥

Q $→ ⊥

R $→ &

P $→ ⊥

Fig. 1.3. Visualization of Example 1.30

One easy optimization is the following: if variable P appears only positively
or only negatively in F , it should not be chosen by choose vars(F ′). P appears
only positively when every P -literal is just P ; P appears only negatively when
every P -literal is ¬P . In both cases, F is equisatisfiable to the formula F ′

constructed by removing all clauses containing an instance of P . Therefore,
these clauses do not contribute to BCP. When only such variables remain,
the formula must be satisfiable: a full interpretation can be constructed by
setting each variable’s value based on whether it appears only positively (true)
or only negatively (false).

The values to which propositional variables are set on the path to a solution
can be recorded so that DPLL can return a satisfying interpretation if one
exists, rather than just true.

Example 1.29. Consider the formula

F : (P ) ∧ (¬P ∨Q) ∧ (R ∨ ¬Q ∨ S) .

On the first level of recursion, dpll recognizes the unit clause (P ) and applies
the BCP steps from Example 1.28, resulting in the formula

F ′′ : R ∨ S .

The unit resolutions correspond to the partial interpretation

{P #→ true, Q #→ true} .

Only positively occurring variables remain, so F is satisfiable. In particular,

{P #→ true, Q #→ true, R #→ true, S #→ true}

is a satisfying interpretation of F .
Branching was not required in this example. !
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Only positively occurring variables remain, so F is satisfiable. In particular,
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Example 1.30. Consider the formula

F : (¬P ∨Q ∨R) ∧ (¬Q ∨R) ∧ (¬Q ∨ ¬R) ∧ (P ∨ ¬Q ∨ ¬R) .



Summary
● SAT problem

● NNF, DNF, CNF

● Tseitin’s transformation

● Boolean constraint propagation (BCP)

● DPLL


