CSE4051: Program Verification Propositional Logic

2025 Fall

Woosuk Lee

Calculus of Computation

- Calculus: a set of symbols + rules for manipulating the symbols
 - e.g., Differential calculus: rules for manipulating integral symbols over a polynomial
- We may ask questions about computations
 - Ooes this program terminate?
 - O Does this program output a sorted array for a given array?
 - Does this program access unallocated memory?
- We need a calculus to reason about computation to answer these questions.

Propositional Logic and First-Order Logic

- Also known as propositional calculus and predicate calculus
- calculi for reasoning about propositions and predicates
- Propositions: statements that can be true or false
 - e.g., "It is raining", "2 + 2 = 4"
- Predicates: statements that can be true or false depending on the values given to them
 - o e.g., "x is greater than 2", "y is a prime number"

- **Syntax**: a set of symbols and rules for combining them to form "sentences" of a language
- Truth symbols T(true), \bot (false) are propositions.
- Propositional (or Boolean) variables: p, q, r, ... are propositions.
- Logical connectives are used to combine propositions to construct propositions.
 - Negation: ¬ (not)
 - Disjunction: \(\text{(or)} \)

Conjunction: \(\land \)

Implication: ⇒ (implies)

$$a \Rightarrow b \equiv \neg a \lor b$$

• Atom: a truth symbol or a propositional variable

$$(\neg p \land \top) \lor (q \Rightarrow \bot)$$

- Atom: a truth symbol or a propositional variable
- Literal: an atom or its negation

$$(\neg P \land \top) \lor (q \Rightarrow \bot)$$

- Atom: a truth symbol or a propositional variable
- Literal: an atom or its negation
- Formula: a finite sequence of literals combined using logical connectives

- Semantics: rules for providing "meaning" to each sentence
- Meaning is given by the truth values (true and false)
- Rules:
 - o "⊤ means true"
 - o "⊥ means false"
 - o "T∧⊥ means false"
 - 0 ...
- We cannot enumerate such rules for infinitely many propositions!
- Also, meaning of a proposition varies depending on meaning of variables.

Interpretation

- ullet Interpretation I for a formula F maps every variable in F to a truth value
 - \circ e.g., $I: \{p \mapsto true, q \mapsto false\}$
- We write I
 tin F if F is true under interpretation I.

 Otherwise, we write I
 tin F
- Our goal: given a formula F and an interpretation I, decide if $I \models F$ or $I \not\models F$ using finitely many rules.

- We define the meaning of basic elements first
 - \circ T is true, \bot is false
 - o a variable is true if it is assigned true, false if assigned false
- Assuming the meaning of a set of elements is fixed, define a more complex element in terms of these elements ($F_1 \wedge F_2$ is more complex formula than the formulae F_1 or F_2)
 - \circ $\neg F$ is true if F is false, and vice versa
 - \circ $F_1 \wedge F_2$ is true if both F_1 and F_2 are true
 - o $F_1 \vee F_2$ is true if at least one of F_1 or F_2 is true
 - \circ $F_1 \Rightarrow F_2$ is false only if F_1 is true and F_2 is false

- We define the meaning of basic elements first
 - \circ \top is true, \bot is false
 - o a variable is true if it is assigned true, false if assigned false
- Assuming the meaning of a set of elements is fixed, define a more complex element in terms of these elements ($F_1 \wedge F_2$ is more complex formula than the formulae F_1 or F_2)
 - \circ $\neg F$ is true if F is false, and vice versa
 - \circ $F_1 \wedge F_2$ is true if both F_1 and F_2 are true
 - \circ $F_1 \vee F_2$ is true if at least one of F_1 or F_2 is true
 - \circ $F_1 \Rightarrow F_2$ is false only if F_1 is true and F_2 is false

$$I \models \top$$
 $I \not\models \bot$

- We define the meaning of basic elements first
 - \circ T is true, \bot is false
 - o a variable is true if it is assigned true, false if assigned false
- Assuming the meaning of a set of elements is fixed, define a more complex element in terms of these elements ($F_1 \wedge F_2$ is more complex formula than the formulae F_1 or F_2)
 - \circ $\neg F$ is true if F is false, and vice versa
 - \circ $F_1 \wedge F_2$ is true if both F_1 and F_2 are true
 - \circ $F_1 \vee F_2$ is true if at least one of F_1 or F_2 is true
 - \circ $F_1 \Rightarrow F_2$ is false only if F_1 is true and F_2 is false

- We define the meaning of basic elements first
 - \circ T is true, \bot is false
 - o a variable is true if it is assigned true, false if assigned false
- Assuming the meaning of a set of elements is fixed, define a more complex element in terms of these elements ($F_1 \wedge F_2$ is more complex formula than the formulae F_1 or F_2)
 - \circ $\neg F$ is true if F is false, and vice versa
 - \circ $F_1 \wedge F_2$ is true if both F_1 and F_2 are true
 - \circ $F_1 \vee F_2$ is true if at least one of F_1 or F_2 is true
 - o $F_1 \Rightarrow F_2$ is false only if F_1 is true and F_2 is false

$$I \models \neg F \qquad \text{iff } I \not\models F$$

- We define the meaning of basic elements first
 - \circ T is true, \bot is false
 - o a variable is true if it is assigned true, false if assigned false
- Assuming the meaning of a set of elements is fixed, define a more complex element in terms of these elements ($F_1 \wedge F_2$ is more complex formula than the formulae F_1 or F_2)
 - \circ $\neg F$ is true if F is false, and vice versa

$$I \models F_1 \land F_2 \quad \text{iff } I \models F_1 \text{ and } I \models F_2$$

- o $F_1 \wedge F_2$ is true if both F_1 and F_2 are true
- \circ $F_1 \vee F_2$ is true if at least one of F_1 or F_2 is true
- \circ $F_1 \Rightarrow F_2$ is false only if F_1 is true and F_2 is false

- We define the meaning of basic elements first
 - \circ T is true, \bot is false
 - o a variable is true if it is assigned true, false if assigned false
- Assuming the meaning of a set of elements is fixed, define a more complex element in terms of these elements ($F_1 \wedge F_2$ is more complex formula than the formulae F_1 or F_2)

 $I \models F_1 \vee F_2 \quad \text{iff } I \models F_1 \text{ or } I \models F_2$

- \circ $\neg F$ is true if F is false, and vice versa
- o $F_1 \wedge F_2$ is true if both F_1 and F_2 are true
- \circ $F_1 \lor F_2$ is true if at least one of F_1 or F_2 is true
- \circ $F_1 \Rightarrow F_2$ is false only if F_1 is true and F_2 is false

- We define the meaning of basic elements first
 - \top is true, \bot is false
 - a variable is true if it is assigned true, false if assigned false
- Assuming the meaning of a set of elements is fixed, define a more complex element in terms of these elements $(F_1 \wedge F_2)$ is more complex formula than the formulae F_1 or F_2)
 - \circ $\neg F$ is true if F is false, and vice versa
 - \circ $F_1 \wedge F_2$ is true if both F_1 and F_2 are true

$$I \models F_1 \rightarrow F_2$$

 $I \models F_1 \rightarrow F_2 \quad \text{iff, if } I \models F_1 \text{ then } I \models F_2$

 \circ $F_1 \vee F_2$ is true if at least one of F_1 or F_2 is true

true when $I \not\models F_1$

 \circ $F_1 \Rightarrow F_2$ is false only if F_1 is true and F_2 is false

Or

$$I \not\models F_1 \rightarrow F_2 \quad \text{iff } I \models F_1 \text{ and } I \not\models F_2$$

- Recall the previous formula $F: P \land Q \to P \lor \neg Q$ and interpretation $I: \{P \mapsto \mathsf{true}, \ Q \mapsto \mathsf{false}\}$
- Compute the truth value of F as follows:

1.
$$I \models P$$
 since $I[P] = \text{true}$
2. $I \not\models Q$ since $I[Q] = \text{false}$
3. $I \models \neg Q$ by 2 and semantics of \neg
4. $I \not\models P \land Q$ by 2 and semantics of \land
5. $I \models P \lor \neg Q$ by 1 and semantics of \lor
6. $I \models F$ by 4 and semantics of \rightarrow

Satisfiability and Validity

- Q is satisfiable if and only if
 - A satisfying interpretation of Q exists (i.e., I ≠ Q for some I)

- Q is valid if and only if
 - All interpretations of Q are satisfying (i.e., I ≠ Q for all I)
 - Otherwise, invalid (i.e., there exists I such that $I \not\models Q$)
- Satisfiability and validity are dual
 - "Q is valid" \equiv " \neg Q is unsatisfiable"

Methods for Deciding Satisfiability & Validity

- Truth-table method (a.k.a. proof by enumeration)
 - Enumerate all interpretations and check if a formula is satisfiable in every case
- Semantic argument method (a.k.a. proof by deduction)
 - Assuming the formula is invalid (i.e., there exists a falsifying interpretation I such that $I \not\models F$, check if the assumption leads to a contradiction.

Truth-Table Method

- Consider formula $F: P \land Q \rightarrow P \lor \neg Q$
- Truth table (0 corresponds to the value false, I to true)

P	Q	$P \wedge Q$	$\neg Q$	$P \vee \neg Q$	F
0	0	0	1	1	1
0	1	0	0	0	1
1	0	0	1	1	1
1	1	1	0	1	1

• F is valid because it is true under every possible interpretation.

Truth-Table Method

- ullet Consider formula $F: P \lor Q \rightarrow P \land Q$
- Truth table

P	Q	$P \lor Q$	$P \wedge Q$	F
0	0	0	0	1
0	1	1	0	0
1	0	1	0	0
1	1	1	1	1

• F is invalid because the second and third rows are false.

- Assume a formula is invalid, and check if it leads to a contradiction by applying proof rules.
- A proof rule has one or more premises (assumed facts) and deductions (deduced facts)

Assumed fact1, ..., Assumed fact n

Deduced fact'1, ..., Deduced fact'n

• Read as "If fact I, ..., fact n are true, then fact' I, ..., fact' n are also true.

$$\frac{I \models \neg F}{I \not\models F}$$

$$\frac{I \not\models \neg F}{I \models F}$$

$$\frac{I \models F \lor G}{I \models F \mid I \models G}$$

$$\begin{array}{c|cccc}
I & \not\models & F \lor G \\
\hline
I & \not\models & F \\
I & \not\models & G
\end{array}$$

$$\begin{array}{c|cccc}
I & \not\models & F \to G \\
\hline
I & \models & F \\
I & \not\models & G
\end{array}$$

$$\begin{array}{c|c} I \models F \\ I \not\models F \\ \hline I \models \bot \end{array}$$

Contradiction!

AND-OR Tree

- We will use an and-or tree as a graphical representation of a proof.
- The following tree represents

"If (Q and R) or S, then P"
"If T or U, then Q"

• To prove formula $F: P \wedge Q \rightarrow P \vee \neg Q$ is valid, assume it is invalid and derives a contradiction (then, the assumption is wrong, which means F is valid).

• To prove formula $F: P \wedge Q \rightarrow P \vee \neg Q$ is valid, assume it is invalid and derives a contradiction (then, the assumption is wrong, which means F is valid).

ullet To prove formula $F:\;(P o Q)\wedge (Q o R)\; \to \;(P o R)\;$ is valid

 \bullet To prove formula $F:\;(P\to Q)\land (Q\to R)\;\to\;(P\to R)$ is valid

 \bullet To prove formula $F:\;(P\to Q)\land (Q\to R)\;\to\;(P\to R)$ is valid

Checking Satisfiability is Hard

Boolean satisfiability problem (SAT): for a given formula, determine if there
 exists an interpretation that makes the formula true

NP-complete

- NP: a class of problems that are solvable in polynomial time when you are very lucky (P: a class of problems that are always solvable in polynomial time)
- NP-complete: hardest ones in NP
- o general SAT algorithms are probably exponential in time

Semantic Equivalence

- Two formulas F_1 and F_2 are equivalent if they evaluate to the same truth value under all interpretations.
- In other words, $(F_1 \implies F_2) \land (F_2 \implies F_1)$ is valid (in short $F_1 \Leftrightarrow F_2$)
 - $_{\circ}$ $P \Leftrightarrow \neg \neg P$
 - \circ $P \to Q \Leftrightarrow \neg P \lor Q$

Normal Forms

- A normal form of formulae is a *syntactic restriction* such that for every formula of the logic, there is an equivalent formula in the normal form.
- Three important normal forms for propositional logic:
 - Negation Normal Form (NNF)
 - Disjunctive Normal Form (DNF)
 - Conjunctive Normal Form (CNF)

Negation Normal Form (NNF)

- NNF requires that \neg , \wedge , and \vee be the only connectives and that negations appear only in literals. First step before converting to other normal forms
- Transforming into an NNF form can be done using the following equivalences:

• For transformation, the equivalences should be applied left-to-right.

Negation Normal Form (NNF)

- NNF requires that \neg , \wedge , and \vee be the only connectives and that negations appear only in literals. First step before converting to other normal forms
- Transforming into an NNF form can be done using the following equivalences:

$$abla F_1 \Leftrightarrow F_1$$
 $abla T \Leftrightarrow \bot$
 $abla \bot \Leftrightarrow T$
 $abla (F_1 \land F_2) \Leftrightarrow \neg F_1 \lor \neg F_2 \\
 abla (F_1 \lor F_2) \Leftrightarrow \neg F_1 \land \neg F_2$
 $abla (F_1 \lor F_2) \Leftrightarrow \neg F_1 \lor F_2$
 $abla (F_1 \to F_2) \Leftrightarrow (F_1 \to F_2) \land (F_2 \to F_1)$

• For transformation, the equivalences should be applied left-to-right.

QUIZ

• Convert the formula $F: \neg(P \rightarrow \neg(P \land Q))$ to NNF.

Disjunctive Normal Form (DNF)

 A formula is in disjunctive normal form (DNF) if it is a disjunction of conjunctions of literals:

$$\bigvee_i \bigwedge_j \ell_{i,j}$$
 for literals $\ell_{i,j}$

For conversion, use the following equivalences:

$$(F_1 \lor F_2) \land F_3 \Leftrightarrow (F_1 \land F_3) \lor (F_2 \land F_3)$$

 $F_1 \land (F_2 \lor F_3) \Leftrightarrow (F_1 \land F_2) \lor (F_1 \land F_3)$

QUIZ

- ullet Convert the formula $F: (Q_1 \lor \neg \neg Q_2) \land (\neg R_1 \to R_2)$ to DNF
 - You should first transform it into NNF

Disjunctive Normal Form (DNF)

- Deciding satisfiability of a DNF formula is trivial. Why?
 - Given $C_1 \vee C_2 \vee \cdots \vee C_n$, find one clause C_i that is satisfiable
 - Each clause is of form $l_1 \wedge l_2 \cdots \wedge l_m$
 - \circ A clause is satisfiable if there is no contradiction (e.g., $A \land \neg A$)
 - This can be done in linear time per clause.

```
for clause in disjuncts:
   if clause is internally consistent:
      return SAT
return UNSAT
```

Complexity : O(size of formula)

Disjunctive Normal Form (DNF)

- Why don't we just convert formula to DNF and do the simple check?
 - Then, can checking satisfiability be done in linear time?
- No because of the exponential blowup!
 - A formula $(F_1 \lor F_2) \land (F_3 \lor F_4)$ is in DNF:
 - $(F_1 \land F_3) \lor (F_1 \lor F_4) \lor (F_2 \land F_3) \lor (F_2 \land F_4)$
 - Whenever we distribute, formula size doubles!
- Checking satisfiability by converting to DNF is almost as bad as truth tables.

Conjunctive Normal Form (CNF)

• A formula is in conjunctive normal form (CNF) if it is a conjunction of disjunction of literals:

$$\bigwedge_i \bigvee_j \ell_{i,j}$$
 for literals $\ell_{i,j}$

For conversion, use the following equivalences

$$(F_1 \wedge F_2) \vee F_3 \Leftrightarrow (F_1 \vee F_3) \wedge (F_2 \vee F_3)$$

 $F_1 \vee (F_2 \wedge F_3) \Leftrightarrow (F_1 \vee F_2) \wedge (F_1 \vee F_3)$

QUIZ

- ullet Convert the formula $F: (Q_1 \lor \neg \neg Q_2) \land (\neg R_1 \to R_2)$ to CNF
 - You should first transform it into NNF

Conjunctive Normal Form (CNF)

- Solving CNF is not as easy as solving DNF.
- Conversion to CNF does not explode as DNF.
 - Many formulas that would be very large in DNF can be small in CNF.
- SAT solvers use CNF as their input language.
 - CNF gives a uniform input format for solvers.
 - DIMACS (standard SAT input format)

Conversion to an Equisatisfiable Formula in CNF

- Two formulas F and G are **equisatisfiable** if they are both satisfiable or both unsatisfiable.
- Tseitin's transformation converts a formula F into an equisatisfiable CNF formula with only a *linear increase* in size.

Tseitin's Transformation

- For example, given $F: x \implies (y \land z)$
- For every sub formula G of F (unless G is an atom), introduce a new variable representing G
 - $\circ v_1 \Leftrightarrow (x \implies v_2)$
 - $\circ \quad v_2 \Leftrightarrow (y \land z)$
- Formula: $v_1 \land (v_1 \Leftrightarrow (x \implies v_2)) \land (v_2 \Leftrightarrow (y \land z))$

Tseitin's Transformation (contd.)

• Convert each $v_i \Leftrightarrow G$ into CNF

$$\circ \quad (v_1 \Longrightarrow \neg x \lor v_2) \land (\neg x \lor v_2 \Longrightarrow v_1) \rightarrow (\neg v_1 \lor \neg x \lor v_2) \land (\neg (\neg x \lor v_2) \lor v_1)$$

$$\rightarrow (\neg v_1 \lor \neg x \lor v_2) \land (\neg (\neg x \lor v_2) \lor v_1)$$

$$\rightarrow (\neg v_1 \lor \neg x \lor v_2) \land ((x \land \neg v_2) \lor v_1)$$

$$\rightarrow (\neg v_1 \lor \neg x \lor v_2) \land (x \lor v_1) \land (\neg v_2 \lor v_1)$$

$$(v_2 \Longrightarrow y \land z) \land (y \land z \Longrightarrow v_2) \rightarrow (\neg v_2 \lor y \land z) \land (\neg (y \land z) \lor v_2)$$

$$\rightarrow (\neg v_2 \lor y \land z) \land (\neg y \lor \neg z \lor v_2)$$

• Final result:

$$v_1 \wedge (\neg v_1 \vee \neg x \vee v_2) \wedge (x \vee v_1) \wedge (\neg v_2 \vee v_1) \wedge (\neg v_2 \vee y \wedge z) \wedge (\neg y \vee \neg z \vee v_2)$$

DPLL Algorithm

- The two naive methods for satisfiability
 - Truth-table method (a.k.a. proof by enumeration)
 - Semantic argument method (a.k.a. proof by deduction)
- DPLL algorithm combines enumeration and deduction in an effective way.
- Any given formula is transformed into CNF before fed into the DPLL algorithm.

Unit Resolution

- Suppose we have two clauses C_1 and C_2 that share a variable P but disagrees on its value (e.g., C_1 contains P and C_2 contains $\neg P$)
- Either the rest of C_1 or the rest of C_2 must be satisfied.
 - If P is true, literals other than $\neg P$ in C_2 should be true
 - If P is false, literals other than P in C_1 should be true

Unit Resolution (contd.)

ullet More formally, suppose we have two clauses C_1 and C_2 that share a variable P such that

$$C_1 = \alpha_1 \vee \cdots \vee \alpha_n \vee P$$
 and $C_2 = \beta_1 \vee \cdots \vee \beta_m \vee \neg P$

• Then, unit resolution is stated as the following rule:

$$\alpha_1 \vee \cdots \vee \alpha_n \vee P$$
 $\beta_1 \vee \cdots \vee \beta_m \vee \neg P$

$$\alpha_1 \vee \cdots \vee \alpha_n \vee \beta_1 \vee \cdots \vee \beta_m$$

Example

Suppose we have
$$F: (\neg P \lor Q) \land P \land \neg Q$$

From resolution

$$\frac{(\neg P \lor Q) \qquad P}{Q}$$

We construct

$$F_1: (\neg P \lor Q) \land P \land \neg Q \land Q$$

From resolution

$$\frac{\neg Q}{\bot}$$

F is unsatisfiable.

DPLL Algorithm

- The process of applying unit resolution as much as possible (i.e., until no more resolution is possible) is called *Boolean constraint propagation* (**BCP**).
- The DPLL algorithm (return true: SAT, return false: UNSAT):

```
function DPLL (F) {
F' = BCP(F);
if F' = T then return true
else if F' = \bot then return false
else
P = Choose\_var(F');
return (DPLL(F' \{P \mapsto T\}) \text{ or } DPLL(F' \{P \mapsto \bot\}))
```

DPLL Example

• Consider $F: (\neg P \lor Q \lor R) \land (\neg Q \lor R) \land (\neg Q \lor \neg R) \land (P \lor \neg Q \lor \neg R)$

Summary

- SAT problem
- NNF, DNF, CNF
- Tseitin's transformation
- Boolean constraint propagation (BCP)
- DPLL