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Motivation
● In the previous lectures, we learned decision procedures for various first-order 

theories (and their combinations)

○ that can handle only quantifier-free conjunctive formulas. 

● Questions

○ How can we handle more general forms containing both conjunctions and 

disjunctions? 

○ Can we leverage the previous CDCL algorithm for propositional logic for 

first-order theories? 

● Answer: DPLL(T)



The Key Idea
● SAT solver handles boolean structure, and theory solver handles theory-specific 

reasoning. 

● For each atomic formula in a first-order theory, transform it into a fresh 

propositional variable (called Boolean abstraction)

● If the resulting propositional logic formula is

○ UNSAT: we are done — also UNSAT modulo first-order theory

○ SAT : it doesn’t necessarily mean original formula is SAT 

Ask a theory solver to check if the SAT assignment is satisfiable modulo theory

○ If not, add conflict clause to guide the search



Motivating Example
● Suppose we have a formula in the theory of equality (￼ ) 

￼

● Represent it as a propositional logic formula  

                           ￼

TE

g(a) = c

b1

∧ (¬( f(g(a)) = f(c)

b2

) ∨ g(a) = d

b3

) ∧ ¬(c = d)

b4

b1 ∧ (¬b2 ∨ b3) ∧ ¬b4



Basic SMT Solving (First Iteration)
● Suppose we have a formula in the theory of equality (￼ ) 

￼

● Represent it as a propositional logic formula  

                           ￼

● SAT solver returns a solution ￼

TE

g(a) = c

b1

∧ (¬( f(g(a)) = f(c)

b2

) ∨ g(a) = d

b3

) ∧ ¬(c = d)

b4

b1 ∧ (¬b2 ∨ b3) ∧ ¬b4

{b1 ↦ true, b2 ↦ false, b3 ↦ false, b4 ↦ false}



Basic SMT Solving (First Iteration)
● Suppose we have a formula in the theory of equality (￼ ) 

￼

● Represent it as a propositional logic formula  

                           ￼

● SAT solver returns a solution ￼

● ￼  solver says UNSAT for ￼

TE

g(a) = c

b1

∧ (¬( f(g(a)) = f(c)

b2

) ∨ g(a) = d

b3

) ∧ ¬(c = d)

b4

b1 ∧ (¬b2 ∨ b3) ∧ ¬b4

{b1 ↦ true, b2 ↦ false, b3 ↦ false, b4 ↦ false}

TE g(a) = c ∧ f(g(a)) ≠ f(c) ∧ g(a) ≠ d ∧ c ≠ d



Basic SMT Solving (Second Iteration)
● Suppose we have a formula in the theory of equality (￼ ) 

￼

● Add the negation of the current assignment 

                           ￼

● SAT solver returns ￼

● ￼  solver says UNSAT for ￼

TE

g(a) = c

b1

∧ (¬( f(g(a)) = f(c)

b2

) ∨ g(a) = d

b3

) ∧ ¬(c = d)

b4

b1 ∧ (¬b2 ∨ b3) ∧ ¬b4 ∧ (¬b1 ∨ b2 ∨ b3 ∨ b4)

{b1 ↦ true, b2 ↦ true, b3 ↦ true, b4 ↦ false}

TE g(a) = c ∧ f(g(a) = f(c) ∧ g(a) = d ∧ c ≠ d



Basic SMT Solving (Third Iteration)
● Suppose we have a formula in the theory of equality (￼ ) 

￼

● Add the negation of the current assignment 

       ￼

● SAT solver returns ￼ .

● ￼  solver says UNSAT for ￼

TE

g(a) = c

b1

∧ (¬( f(g(a)) = f(c)

b2

) ∨ g(a) = d

b3

) ∧ ¬(c = d)

b4

b1 ∧ (¬b2 ∨ b3) ∧ ¬b4 ∧ (¬b1 ∨ b2 ∨ b3 ∨ b4) ∧ (¬b1 ∨ ¬b2 ∨ ¬b3 ∨ b4)

{b1 ↦ true, b2 ↦ false, b3 ↦ true, b4 ↦ false}

TE g(a) = c ∧ f(g(a) = f(c) ∧ g(a) = d ∧ c ≠ d



Basic SMT Solving (Fourth Iteration)
● Suppose we have a formula in the theory of equality (￼ ) 

￼

● Add the negation of the current assignment 

￼  

￼

● SAT solver returns UNSAT

● Therefore, UNSAT

TE

g(a) = c

b1

∧ (¬( f(g(a)) = f(c)

b2

) ∨ g(a) = d

b3

) ∧ ¬(c = d)

b4

b1 ∧ (¬b2 ∨ b3) ∧ ¬b4 ∧ (¬b1 ∨ b2 ∨ b3 ∨ b4) ∧ (¬b1 ∨ ¬b2 ∨ ¬b3 ∨ b4)

∧ (¬b1 ∨ b2 ∨ ¬b3 ∨ b4)



Improved SMT Solving
● Just adding negation of current assignment is too weak. 

● Recall ￼  

in the second iteration and  

￼  

in the third iteration  

lead to ￼  UNSAT for the same reason (￼ )

● Instead of preventing exact same assignment, we may prevent the major reason 

for UNSAT.

{b1 ↦ true, b2 ↦ true, b3 ↦ true, b4 ↦ false}

{b1 ↦ true, b2 ↦ false, b3 ↦ true, b4 ↦ false}

TE g(a) = c ∧ g(a) = d ∧ c ≠ d



Improved SMT Solving (First Iteration)
● Same formula 

￼

● SAT solver returns a solution ￼

● ￼  solver says UNSAT for ￼

● Major reason: ￼

g(a) = c

b1

∧ (¬( f(g(a)) = f(c)

b2

) ∨ g(a) = d

b3

) ∧ ¬(c = d)

b4

{b1 ↦ true, b2 ↦ false, b3 ↦ false, b4 ↦ false}

TE g(a) = c ∧ f(g(a)) ≠ f(c) ∧ g(a) ≠ d ∧ c ≠ d

b1 ∧ ¬b2



Improved SMT Solving (Second Iteration)
● Same formula 

￼

● Add the negation of ￼  

                           ￼

● SAT solver returns a solution ￼

● ￼  solver says UNSAT for ￼

● Major reason: ￼

g(a) = c

b1

∧ (¬( f(g(a)) = f(c)

b2

) ∨ g(a) = d

b3

) ∧ ¬(c = d)

b4

b1 ∧ ¬b2

b1 ∧ (¬b2 ∨ b3) ∧ ¬b4 ∧ (¬b1 ∨ b2)

{b1 ↦ true, b2 ↦ true, b3 ↦ true, b4 ↦ false}

TE g(a) = c ∧ f(g(a)) = f(c) ∧ g(a) = d ∧ c ≠ d

b1 ∧ b3 ∧ ¬b4



Improved SMT Solving (Third Iteration)
● Same formula 

￼

● Add the negation of ￼  

                           ￼

● SAT solver returns UNSAT

● Therefore, UNSAT

g(a) = c

b1

∧ (¬( f(g(a)) = f(c)

b2

) ∨ g(a) = d

b3

) ∧ ¬(c = d)

b4

b1 ∧ b3 ∧ ¬b4

b1 ∧ (¬b2 ∨ b3) ∧ ¬b4 ∧ (¬b1 ∨ b2) ∧ (¬b1 ∨ ¬b3 ∨ b4)



Further Improved SMT Solving
● The improved version is better than the basic version (4 → 3 iterations until 

UNSAT). 

● But still need to wait for full assignment from the SAT solver, which can be 

problematic. 

● As soon as SAT solver makes assignment ￼  = true (i.e., ￼ , we can 

deduce ￼ , which makes ￼  also true (but SAT solver assigned false to 

￼  in the first iteration)

● No need to continue with SAT solving after this partial assignment to obtain ￼  

= true and ￼  = false. 

b1 g(a) = c)

f(g(a) = f(c) b2

b2

b1

b2



Further Improved SMT Solving (First Iteration)

● Same formula 

￼

● SAT solver assigns ￼

● ￼  solver says ￼  should also be true (￼ )

● Add ￼   

                    ￼

g(a) = c

b1

∧ (¬( f(g(a)) = f(c)

b2

) ∨ g(a) = d

b3

) ∧ ¬(c = d)

b4

b1 ↦ true

TE b2 ∵ g(a) = c ⇒ f(g(a)) = f(c)

b1 ⟹ b2

b1 ∧ (¬b2 ∨ b3) ∧ ¬b4 ∧ (¬b1 ∨ b2)



Further Improved SMT Solving (First Iteration)

● Same formula 

￼

● SAT solver assigns ￼

● ￼  solver says ￼  should be true if ￼  

● Add ￼   

                    ￼

g(a) = c

b1

∧ (¬( f(g(a)) = f(c)

b2

) ∨ g(a) = d

b3

) ∧ ¬(c = d)

b4

b1 ↦ true, b2 ↦ true, b3 ↦ true

TE b4 b1 ∧ b3

b1 ∧ b3 ⟹ b4

b1 ∧ (¬b2 ∨ b3) ∧ ¬b4 ∧ (¬b1 ∨ b2) ∧ (¬b1 ∨ ¬b3 ∨ b4)



Further Improved SMT Solving (First Iteration)

● Same formula 

￼

● SAT solver assigns ￼

● UNSAT ￼

● Conflict clause learning (￼ ) 

       ￼

g(a) = c

b1

∧ (¬( f(g(a)) = f(c)

b2

) ∨ g(a) = d

b3

) ∧ ¬(c = d)

b4

b1 ↦ true, b2 ↦ true, b3 ↦ true, b4 ↦ true

( ∵ ⋯ ∧ ¬b4)

¬b1 ∨ ¬b3

b1 ∧ (¬b2 ∨ b3) ∧ ¬b4 ∧ (¬b1 ∨ b2) ∧ (¬b1 ∨ ¬b3 ∨ b4) ∧ (¬b1 ∨ ¬b3)



Further Improved SMT Solving (Second Iteration)

● Same formula 

￼

● For ￼

● SAT solver says UNSAT

● Therefore, UNSAT 

     

g(a) = c

b1

∧ (¬( f(g(a)) = f(c)

b2

) ∨ g(a) = d

b3

) ∧ ¬(c = d)

b4

b1 ∧ (¬b2 ∨ b3) ∧ ¬b4 ∧ (¬b1 ∨ b2) ∧ (¬b1 ∨ ¬b3 ∨ b4) ∧ (¬b1 ∨ ¬b3)



Summary
● The basic SMT solving uses a SAT solver as blackbox (needs 4 iterations)

● The improved SMT solving uses a SAT solver as blackbox, but add minimal 

conflict clauses with aid of a theory solver (needs 3 iterations). 

● The further improved SMT solving does NOT a SAT solver as blackbox. It 

integrates a theory solver right into the SAT solver. Also, the theory solver 

guides the search of SAT solver (needs 2 iterations). 



Names of the Approaches
● The basic approach : Off-line SMT

● The improved approach: Off-line SMT with minimal unsat core

● The further improved approach: On-line SMT (aka DPLL(T))



Details of the Algorithms



Boolean Abstraction
● The encoding function ￼  takes an SMT formula ￼  and return a boolean formula 

as follows:

○ If ￼  is of form ￼  (or ￼ ) for some formula ￼ , then  

     ￼  (or ￼ )

○ If ￼  is of form ￼  for some formula ￼ , then  

     ￼

○ If F is of form an SMT formula, then  

     ￼   where ￼  is a fresh propositional variable

e F

F F1 ∧ F2 F1 ∨ F2 F1, F2

e(F) = e(F1) ∧ e(F2) e(F1) ∨ e(F2)

F ¬F′￼ F′￼

e(F) = ¬e(F′￼)

e(F) = b b



Quiz
● What is the boolean abstraction of the formula? 

        ￼x = y ∧ ((y = z ∧ ¬(x > 3)) ∨ x + y ≤ 2)



Boolean Abstraction
● The function ￼  also exists (returns the original SMT formula for a given 

boolean formula)

○ e.g., ￼  = ￼

○ ￼  

   ￼

● If an SMT formula ￼  is satisfiable, then ￼  is also satisfiable. 

○ Is the opposite also true? 

e−1

e(x = y ∧ ((y = z ∧ ¬(x > 3)) ∨ x + y ≤ 2)) b1 ∧ ((b2 ∧ ¬b3) ∨ b4)

e−1(b1 ∧ ((b2 ∧ ¬b3) ∨ b4)) =

x = y ∧ ((y = z ∧ ¬(x > 3)) ∨ x + y ≤ 2)

F e(F)



Theory Conflict Clauses
● ￼  is also satisfiable ￼  SMT formula ￼  is satisfiable 

○ because the boolean abstraction abstracts away theory-related things

● We need to learn theory conflict clauses that prevent solutions of ￼  which 

are not satisfiable modulo theory. 

● Two different approaches

● Off-line (eager): Use a SAT solver as black-box

● On-line (lazy): Integrate theory solver into the CDCL algorithm

e(F) ⟹ F

e(F)



Review: Overview of CDCL Algorithm

Decide BCPFormula

SAT

Return SAT

No conflict

AnalyzeConflict

Conflict Backtrack if dl > 0 

UNSAT if dl ≤ 0

Return UNSAT



Offline SMT

Decide BCPFormula

SAT

Return SAT

Conflict clause

AnalyzeConflict

Conflict Backtrack if dl > 0 

UNSAT if dl ≤ 0

Return UNSAT

Boolean 

Abstraction

T-Solver

T-formula 

corresponding to 

a full assignment



Offline SMT
function OfflineSMT (￼) { 

    ￼ := ￼ 

    while (true) {

        ￼ := CDCL(￼)

        if (￼ is UNSAT) return UNSAT

        ￼ := T-Solver(￼ )

        if (￼ is SAT) return SAT

        ￼ := ￼ 

    }

}

F
B e(F)

A B
A

R e−1(A)
R

B B ∧ ¬A



Offline SMT with UNSAT core

Decide BCPFormula

SAT

Return SAT

Minimal 

conflict clause

AnalyzeConflict

Conflict Backtrack if dl > 0 

UNSAT if dl ≤ 0

Return UNSAT

Boolean 

Abstraction

T-Solver

T-formula 

corresponding to 

a full assignment



UNSAT Core
● Given an unsatisfiable formula in CNF, a subset of clauses whose conjunction is 

still unsatisfiable is called an unsatisfiable core of the formula.  

○ What are all unsat cores of ￼ ? 

● An unsatisfiable core is called a minimal unsatisfiable core, if every proper 

subset (allowing removal of any arbitrary clauses) of it is satisfiable.

○ What are minimal unset cores of ￼ ?

F : x = y ∧ x < y ∧ x > y ∧ x ≠ y

F



Offline SMT with UNSAT core
function OfflineSMT (￼) { 

    ￼ := ￼ 

    while (true) {

        ￼ := CDCL(￼)

        if (￼ is UNSAT) return UNSAT

        ￼ := T-Solver(￼ )

        if (￼ is SAT) return SAT

        ￼ := MinUnsatCore(T-Solver(￼ ))

        ￼ := ￼ 

    }

}

F
B e(F)

A B
A

R e−1(A)
R

U e−1(A)
B B ∧ ¬e(U)



Online SMT (DPLL(T))

Decide BCPFormula

SAT

Return SAT
AnalyzeConflict

Conflict Backtrack if dl > 0 

UNSAT if dl ≤ 0

Return UNSAT

Boolean 

Abstraction

Minimal 

conflict clause

T-Solver

Theory propagation lemmas 

T-formula 

corresponding to 


a partial assignment



Theory Propagation
● Theory solver can infer which literals are implied by current partial assignment 

and let SAT solver know

● In the example, ￼  and ￼  are added.

● These kinds of clauses implied by theory are called theory propagation 

lemmas.

● Adding theory propagation lemmas prevents bad assignments to boolean 

abstraction.

b1 ⟹ b2 b1 ∧ b3 ⟹ b4



Summary
● Boolean abstraction

● Learning theory conflict clauses

● Off-line (eager) approaches

○ basic 

○ with minimal unsat-core

● On-line (lazy) approach (DPLL(T)) 


