CSE405 | : Program Verification

2025 Fall

Woosuk Lee

-




Motivation

e In the previous lectures, we learned decision procedures for various first-order

theories (and their combinations)

o that can handle only quantifier-free conjunctive formulas.

e Questions

0 How can we handle more general forms containing both conjunctions and
disjunctions!
o Can we leverage the previous CDCL algorithm for propositional logic for

first-order theories?

e Answer: DPLL(T)




The Key Idea

e SAT solver handles boolean structure, and theory solver handles theory-specific
reasoning.

e For each atomic formula in a first-order theory, transform it into a fresh
propositional variable (called Boolean abstraction)

e |[f the resulting propositional logic formula is

o UNSAT: we are done — also UNSAT modulo first-order theory

o SAT :it doesn’t necessarily mean original formula is SAT

Ask a theory solver to check if the SAT assignment is satisfiable modulo theory

o If not,add conflict clause to guide the search




Motivating Example

e Suppose we have a formula in the theory of equality (7%)

gla) = c A ((f(gla) =fc) V gla) = d) A ~(c =d)

b, b, by b,

e Represent it as a propositional logic formula

bl N\ (_'b2 V b3) N\ _'b4




Basic SMT Solving (First Iteration)

e Suppose we have a formula in the theory of equality (7%)
gla) = c A (~(f(gla) =fc) V gla) = d) A ~(c =d)

b, b, by b,

e Represent it as a propositional logic formula

bl N\ (_'bz V b3) N\ _'b4

e SAT solver returns a solution {b, — true, b, — ftalse, b, — false, b, — false}




Basic SMT Solving (First Iteration)

e Suppose we have a formula in the theory of equality (7%)

gla) = c A (~(f(gla)) = f(c) Vv gla) =d) A~(c =d)

b, b, b, by

e Represent it as a propositional logic formula

bl N\ (_'bz V b3) N\ _'b4

e SAT solver returns a solution {b, — true, b, — ftalse, b, — false, b, — false}

e T solver says UNSAT for g(a) = c Af(gla)) #f(c)Agla) #FdAc #d




Basic SMT Solving (Second Iteration)

Suppose we have a formula in the theory of equality (7},)

gla) = c A (~(f(gla) = fc) V gla) = d) A ~(c =d)

b, b, b, by

Add the negation of the current assignment

bl N\ (_'bzvb3) AN _'b4/\ (_Ibl Vbz\/bg Vb4)

SAT solver returns {b; — true, b, — true, by — true, b, — talse}

T’ solver says UNSAT for g(a) = c Af(gla) =fc)Agla)=dAcF#d




Basic SMT Solving (Third Iteration)

Suppose we have a formula in the theory of equality (7},)

gla) = c A (~(f(gla)) = fc) Vv gla) =d) A~(c =d)

b, b, b, by

Add the negation of the current assignment

SAT solver returns {b; — true, b, — false, by — true, b, — false}.

T’ solver says UNSAT for g(a) = c Af(gla) =fc)Agla)=dAcF#d




Basic SMT Solving (Fourth Iteration)

e Suppose we have a formula in the theory of equality (71})

gla) = c A (=(f(gla)) = flc)) Vv gla) = d) A =(c = d)

b, b, b, by

e Add the negation of the current assignment
by A(b, Vb)) ANby A(0byVbyV by Vb)) A(0D Vb,V bV by)
A (7b;V b,V bV by)

e SAT solver returns UNSAT

® [herefore, UNSAT




Improved SMT Solving

® Just adding negation of current assignment is too weak.

e Recall {b, — true, b, — true, by — true, b, — false}
in the second iteration and
\b, = true, b, — false, b; — true, b, — talse}
in the third iteration
lead to 7, UNSAT for the same reason (g(a) =c A gla) =d A ¢ # d)

e Instead of preventing exact same assighment, we may prevent the major reason

for UNSALT.




Improved SMT Solving (First Iteration) l

e Same formula

gla) = ¢ A (~(f(g(a) = fc) V gla) = d) A ~(c = d)

b, b, b, by

e SAT solver returns a solution {b, — true, b, — false, b, — false, b, — talse}
@ 1 solver says UNSAT for g(a) =c Af(g(a)) #f(c)Agla) #FdANc#d

e Major reason:b; A 7D,




Improved SMT Solving (Second Iteration)

e Same formula

gla) = c A (~(f(gla) = f(c) V gla) = d) A ~(c = d)

e Add the negation of b; A —b,

by A (b, V by) Aby A (b V b,)
e SAT solver returns a solution {b; — true, b, — true, by — true, b, — talse}
e 1 solver says UNSAT for g(a) = c Af(gla)) =flc)Agla)=dANc#d

e Major reason:b; A by A b,




Improved SMT Solving (Third Iteration) l

e Same formula

gla) = c A ((f(gla) =fc) V gla) = d) A ~(c =d)

b, b, b, by

e Add the negation of by A by A —1b,

by A(by,V by) Aby A(0b Vb)) A(byV 2Dy V by)
e SAT solver returns UNSAT
® [herefore, UNSAT




Further Improved SMT Solving

e The improved version is better than the basic version (4 — 3 iterations until

UNSAT).

e But still need to wait for full assignment from the SAT solver, which can be

problematic.
e As soon as SAT solver makes assignment b, = true (i.e., g(a) = c¢), we can

deduce f(g(a) = f(c), which makes b, also true (but SAT solver assigned false to

b, in the first iteration)

e No need to continue with SAT solving after this partial assighment to obtain b,

= true and b, = false.




Further Improved SMT Solving (First Iteration) l

e Same formula

gla) = c A ((f(gla) =fc) V gla) = d) A ~(c = d)

b, b, b, by

e SAT solver assigns b; — true
e 1 solver says b, should also be true (. g(a) = ¢ = f(g(a)) = f(¢))
| Add bl — bz

bl A\ (_'b2Vb3) N\ _'b4/\ (_'bl Vbz)




Further Improved SMT Solving (First Iteration)

e Same formula

gla) = c A (~(f(gla) = f(c) V gla) = d) A ~(c = d)

b, b, b, by

e SAT solver assigns b, — true, b, — true, b; — true
e T} solver says b, should be true if b; A b,
e Add bl N\ b3 — b4

bl N (_'bz\/b3) A\ _'b4/\ (_Ibl Vbz) A\ (_Ibl V _'b3 Vb4)




Further Improved SMT Solving (First Iteration)

e Same formula

gla) = c A ((f(gla) =fc) V gla) =d) A~(c =d)

b, b, b, by

e SAT solver assigns b, — true, b, — true, by — true, b, — true
o UNSAT (" -+ Aby)

e Conflict clause learning (—b; V —1b5)




Further Improved SMT Solving (Second lIteration) l

e Same formula

gla) = c A ((f(gla) =fc) V gla) = d) A ~(c =d)

b, b, b, by

o FOr bl /\ (_'bz V b3) A\ _'b4 /\ (_Ibl V bz) A\ (_Ibl V _'b3 V b4) /\ (_Ibl V _'b3)
e SAT solver says UNSAT
® [herefore, UNSAT




Summary

e The basic SMT solving uses a SAT solver as blackbox (needs 4 iterations)

e The improved SMT solving uses a SAT solver as blackbox, but add minimal
conflict clauses with aid of a theory solver (needs 3 iterations).

e The further improved SMT solving does NOT a SAT solver as blackbox. It
integrates a theory solver right into the SAT solver. Also, the theory solver

guides the search of SAT solver (needs 2 iterations).




Names of the Approaches

® The basic approach : Off-line SMT
e The improved approach: Off-line SMT with minimal unsat core

e The further improved approach: On=line SMT (aka DPLL(T))




Details of the Algorithms

A




Boolean Abstraction

e The encoding function e takes an SMT formula F and return a boolean formula

as follows:
o If Fis of form F| A F, (or F, V F5) for some formula F, F5, then
e(F) = e(F)) A e(l,) (or e(F)) V e(F,))
o If Fis of form = F" for some formula F’, then
e(F) = —e(F’)
o If Fis of form an SMT formula, then

e(F) = b where b is a fresh propositional variable




Quiz

e Whatis the boolean abstraction of the formula?

xX=yA((y=zA"(x>3)Vx+y<?2)




Boolean Abstraction

e The function e~! also exists (returns the original SMT formula for a given

boolean formula)
o eg,e(x=yA((Y=zA"(x>3)Vx+y<2)=b; A({(b, ANDy)V b,)
o e Y by A((by Amby) V by)) =
xX=yAN((y=zA(x>3)Vx+y<2)

e If an SMT formula F' is satisfiable, then e(F) is also satisfiable.

o Is the opposite also true!?




Theory Conflict Clauses

e ¢(F) is also satisfiable 75 SMT formula F is satisfiable

O because the boolean abstraction abstracts away theory-related things

e We need to learn theory conflict clauses that prevent solutions of e(F’) which
are not satisfiable modulo theory.
e Iwo different approaches
e Off-line (eager): Use a SAT solver as black-box

e On-line (lazy): Integrate theory solver into the CDCL algorithm




Review: Overview of CDCL Algorithm

Formula —» Decide BCP
r—
No conflict
lSAT Conflict l I Backtrack if dl > 0
Return SAT

AnalyzeConflict

lUNSAT ifdl<0

Return UNSAT




T-formula
corresponding to
a full assignment

Offline SMT

Boolean

Abstraction —_—

Formula —» Decide — BCP T-Solver
4—

Conflict clause

SAT Conflict Backtrack if dl > 0O

Return SAT ,
AnalyzeConflict

UNSAT ifdl =0

Return UNSAT




Offline SMT

{

return UNSAT

return SAT

function O0fflineSMT (F)

B := e(F)

while (true) {
A := CDCL (B)
if (A is UNSAT)
R := T-Solver (e !(A))
1if (R 1s SAT)
B := BA-A




Offline SMT with UNSAT core o

corresponding to
a full assignment

Boolean I
Abstraction
Formula — Decide BCP
S —
Minimal
- conflict clause
Contlict Backtrack if dl > 0
Return SAT

AnalyzeConflict

UNSAT ifdl =0

Return UNSAT

T-Solver




UNSAT Core

e Given an unsatisfiable formula in CNF a subset of clauses whose conjunction is

still unsatisfiable is called an unsatisfiable core of the formula.

O Whatareallunsatcoresof F : x=yAX<YyAX>YAXF V!

e An unsatisfiable core is called a minimal unsatisfiable core, if every proper

subset (allowing removal of any arbitrary clauses) of it is satisfiable.

o What are minimal unset cores of F?




Offline SMT with UNSAT core

function OfflineSMT
B := e(F)
while (true) {
A := CDCL (B)
if (A i1s UNSAT)
R := T-Solver (
if (R 1s SAT)
U :=
B := BA-e(U)
}
}

MinUnsatCore (T-Solver (

(£) A

return UNSAT

e '(A))

return SAT

e 1(A)) )




Online SMT (DPLL(T))

Theory propagation lemmas

T-formula
corresponding to

Boolean a partial assignment
Abstraction —_—
Formula —» Decide —— BCP T-Solver
4—
Minimal
conflict clause
SAT Conflict Backtrack if dl > 0O
Return SAT

AnalyzeConflict

UNSAT ifdl =0

Return UNSAT




Theory Propagation

Theory solver can infer which literals are implied by current partial assighment

and let SAT solver know

In the example, by = b, and by A by = b, are added.

These kinds of clauses implied by theory are called theory propagation
lemmas.

Adding theory propagation lemmas prevents bad assignhments to boolean

abstraction.




Summary

e Boolean abstraction
e Learning theory conflict clauses
e Off-line (eager) approaches

O basic

o with minimal unsat-core

e On-line (lazy) approach (DPLL(T))




