CSE4051: Program Verification DPLL(T) Framework

2025 Fall

Woosuk Lee

Motivation

- In the previous lectures, we learned decision procedures for various first-order theories (and their combinations)
 - that can handle only quantifier-free conjunctive formulas.
- Questions
 - How can we handle more general forms containing both conjunctions and disjunctions?
 - Can we leverage the previous CDCL algorithm for propositional logic for first-order theories?
- Answer: **DPLL(T)**

The Key Idea

- SAT solver handles boolean structure, and theory solver handles theory-specific reasoning.
- For each atomic formula in a first-order theory, transform it into a fresh propositional variable (called **Boolean abstraction**)
- If the resulting propositional logic formula is
 - UNSAT: we are done also UNSAT modulo first-order theory
 - SAT: it doesn't necessarily mean original formula is SAT
 Ask a theory solver to check if the SAT assignment is satisfiable modulo theory
 - o If not, add conflict clause to guide the search

Motivating Example

• Suppose we have a formula in the theory of equality (T_E)

$$\underbrace{g(a) = c \land (\neg (f(g(a)) = f(c)) \lor g(a) = d) \land \neg (c = d)}_{b_1}$$

$$\underbrace{b_1}$$

$$b_2$$

$$b_3$$

• Represent it as a propositional logic formula

$$b_1 \wedge (\neg b_2 \vee b_3) \wedge \neg b_4$$

Basic SMT Solving (First Iteration)

• Suppose we have a formula in the theory of equality (T_E)

$$\underbrace{g(a) = c}_{b_1} \land (\neg (f(g(a)) = f(c)) \lor g(a) = d) \land \neg (c = d)$$

$$\underbrace{b_1}_{b_2}$$

• Represent it as a propositional logic formula

$$b_1 \wedge (\neg b_2 \vee b_3) \wedge \neg b_4$$

• SAT solver returns a solution $\{b_1 \mapsto \text{true}, b_2 \mapsto \text{false}, b_3 \mapsto \text{false}, b_4 \mapsto \text{false}\}$

Basic SMT Solving (First Iteration)

• Suppose we have a formula in the theory of equality (T_E)

$$\underbrace{g(a) = c}_{b_1} \land (\neg(f(g(a)) = f(c)) \lor g(a) = d) \land \neg(c = d)$$

$$\underbrace{b_1}_{b_2}$$

• Represent it as a propositional logic formula

$$b_1 \wedge (\neg b_2 \vee b_3) \wedge \neg b_4$$

- SAT solver returns a solution $\{b_1 \mapsto \text{true}, b_2 \mapsto \text{false}, b_3 \mapsto \text{false}, b_4 \mapsto \text{false}\}$
- T_E solver says UNSAT for $g(a) = c \land f(g(a)) \neq f(c) \land g(a) \neq d \land c \neq d$

Basic SMT Solving (Second Iteration)

• Suppose we have a formula in the theory of equality (T_E)

$$\underbrace{g(a) = c}_{b_1} \land (\neg(\underbrace{f(g(a)) = f(c)}_{b_2}) \lor \underbrace{g(a) = d}_{b_3}) \land \neg(\underbrace{c = d}_{b_4})$$

Add the negation of the current assignment

$$b_1 \wedge (\neg b_2 \vee b_3) \wedge \neg b_4 \wedge (\neg b_1 \vee b_2 \vee b_3 \vee b_4)$$

- SAT solver returns $\{b_1 \mapsto \text{true}, b_2 \mapsto \text{true}, b_3 \mapsto \text{true}, b_4 \mapsto \text{false}\}$
- T_E solver says UNSAT for $g(a) = c \land f(g(a) = f(c) \land g(a) = d \land c \neq d$

Basic SMT Solving (Third Iteration)

• Suppose we have a formula in the theory of equality (T_E)

$$\underbrace{g(a) = c}_{b_1} \land (\neg(\underbrace{f(g(a)) = f(c)}_{b_2}) \lor \underbrace{g(a) = d}_{b_3}) \land \neg(\underbrace{c = d}_{b_4})$$

Add the negation of the current assignment

$$b_1 \wedge (\neg b_2 \vee b_3) \wedge \neg b_4 \wedge (\neg b_1 \vee b_2 \vee b_3 \vee b_4) \wedge (\neg b_1 \vee \neg b_2 \vee \neg b_3 \vee b_4)$$

- SAT solver returns $\{b_1 \mapsto \text{true}, b_2 \mapsto \text{false}, b_3 \mapsto \text{true}, b_4 \mapsto \text{false}\}.$
- T_E solver says UNSAT for $g(a) = c \land f(g(a) = f(c) \land g(a) = d \land c \neq d$

Basic SMT Solving (Fourth Iteration)

• Suppose we have a formula in the theory of equality (T_E)

$$\underbrace{g(a) = c \land (\neg (f(g(a)) = f(c)) \lor g(a) = d) \land \neg (c = d)}_{b_1}$$

$$\underbrace{b_1}$$

$$b_2$$

$$b_3$$

Add the negation of the current assignment

$$b_1 \wedge (\neg b_2 \vee b_3) \wedge \neg b_4 \wedge (\neg b_1 \vee b_2 \vee b_3 \vee b_4) \wedge (\neg b_1 \vee \neg b_2 \vee \neg b_3 \vee b_4)$$
$$\wedge (\neg b_1 \vee b_2 \vee \neg b_3 \vee b_4)$$

- SAT solver returns UNSAT
- Therefore, UNSAT

Improved SMT Solving

- Just adding negation of current assignment is **too weak**.
- Recall $\{b_1 \mapsto \text{true}, b_2 \mapsto \text{true}, b_3 \mapsto \text{true}, b_4 \mapsto \text{false}\}$ in the second iteration and $\{b_1 \mapsto \text{true}, b_2 \mapsto \text{false}, b_3 \mapsto \text{true}, b_4 \mapsto \text{false}\}$ in the third iteration
 - lead to T_E UNSAT for the same reason $(g(a) = c \land g(a) = d \land c \neq d)$
- Instead of preventing exact same assignment, we may prevent the major reason for UNSAT.

Improved SMT Solving (First Iteration)

Same formula

$$\underbrace{g(a) = c}_{b_1} \land (\neg (f(g(a)) = f(c)) \lor g(a) = d) \land \neg (c = d)$$

$$\underbrace{b_2}_{b_2}$$

- SAT solver returns a solution $\{b_1 \mapsto \text{true}, b_2 \mapsto \text{false}, b_3 \mapsto \text{false}, b_4 \mapsto \text{false}\}$
- T_E solver says UNSAT for $g(a) = c \land f(g(a)) \neq f(c) \land g(a) \neq d \land c \neq d$
- Major reason: $b_1 \wedge \neg b_2$

Improved SMT Solving (Second Iteration)

Same formula

$$\underbrace{g(a) = c}_{b_1} \land (\neg(\underbrace{f(g(a)) = f(c)}_{b_2}) \lor \underbrace{g(a) = d}_{b_3}) \land \neg(\underbrace{c = d}_{b_4})$$

• Add the negation of $b_1 \wedge \neg b_2$

$$b_1 \wedge (\neg b_2 \vee b_3) \wedge \neg b_4 \wedge (\neg b_1 \vee b_2)$$

- SAT solver returns a solution $\{b_1 \mapsto \text{true}, b_2 \mapsto \text{true}, b_3 \mapsto \text{true}, b_4 \mapsto \text{false}\}$
- T_E solver says UNSAT for $g(a) = c \land f(g(a)) = f(c) \land g(a) = d \land c \neq d$
- Major reason: $b_1 \wedge b_3 \wedge \neg b_4$

Improved SMT Solving (Third Iteration)

Same formula

$$\underbrace{g(a) = c \land (\neg (f(g(a)) = f(c)) \lor g(a) = d) \land \neg (c = d)}_{b_1}$$

$$\underbrace{b_1}$$

$$b_2$$

$$b_3$$

• Add the negation of $b_1 \wedge b_3 \wedge \neg b_4$

$$b_1 \wedge (\neg b_2 \vee b_3) \wedge \neg b_4 \wedge (\neg b_1 \vee b_2) \wedge (\neg b_1 \vee \neg b_3 \vee b_4)$$

- SAT solver returns UNSAT
- Therefore, UNSAT

Further Improved SMT Solving

- The improved version is better than the basic version $(4 \rightarrow 3)$ iterations until UNSAT).
- But still need to wait for full assignment from the SAT solver, which can be problematic.
- As soon as SAT solver makes assignment b_1 = true (i.e., g(a) = c), we can deduce f(g(a) = f(c)), which makes b_2 also true (but SAT solver assigned false to b_2 in the first iteration)
- No need to continue with SAT solving after this partial assignment to obtain b_1 = true and b_2 = false.

Further Improved SMT Solving (First Iteration)

Same formula

$$\underbrace{g(a) = c}_{b_1} \land (\neg (f(g(a)) = f(c)) \lor g(a) = d) \land \neg (c = d)$$

$$\underbrace{b_1}_{b_2}$$

- SAT solver assigns $b_1 \mapsto \text{true}$
- T_E solver says b_2 should also be true (: $g(a) = c \Rightarrow f(g(a)) = f(c)$)
- $\bullet \quad \mathsf{Add} \ b_1 \implies b_2$

$$b_1 \wedge (\neg b_2 \vee b_3) \wedge \neg b_4 \wedge (\neg b_1 \vee b_2)$$

Further Improved SMT Solving (First Iteration)

• Same formula

$$\underbrace{g(a) = c}_{b_1} \land (\neg \underbrace{f(g(a)) = f(c)}_{b_2}) \lor \underbrace{g(a) = d}_{b_3}) \land \neg (c = d)$$

- SAT solver assigns $b_1 \mapsto \text{true}, b_2 \mapsto \text{true}, b_3 \mapsto \text{true}$
- T_E solver says b_4 should be true if $b_1 \wedge b_3$
- $\bullet \ \ \, \mathsf{Add} \ b_1 \wedge b_3 \implies b_4 \\ b_1 \wedge (\neg b_2 \vee b_3) \wedge \neg b_4 \wedge (\neg b_1 \vee b_2) \wedge (\neg b_1 \vee \neg b_3 \vee b_4)$

Further Improved SMT Solving (First Iteration)

Same formula

$$\underbrace{g(a) = c}_{b_1} \land (\neg \underbrace{f(g(a)) = f(c)}_{b_2}) \lor \underbrace{g(a) = d}_{b_3}) \land \neg \underbrace{(c = d)}_{b_4}$$

- SAT solver assigns $b_1 \mapsto \text{true}, b_2 \mapsto \text{true}, b_3 \mapsto \text{true}, b_4 \mapsto \text{true}$
- UNSAT $(:: \cdots \land \neg b_{\Delta})$
- Conflict clause learning $(\neg b_1 \lor \neg b_3)$

$$b_1 \wedge (\neg b_2 \vee b_3) \wedge \neg b_4 \wedge (\neg b_1 \vee b_2) \wedge (\neg b_1 \vee \neg b_3 \vee b_4) \wedge (\neg b_1 \vee \neg b_3)$$

Further Improved SMT Solving (Second Iteration)

Same formula

$$\underbrace{g(a) = c \land (\neg (f(g(a)) = f(c)) \lor g(a) = d) \land \neg (c = d)}_{b_1} \underbrace{b_2}$$

- For $b_1 \wedge (\neg b_2 \vee b_3) \wedge \neg b_4 \wedge (\neg b_1 \vee b_2) \wedge (\neg b_1 \vee \neg b_3 \vee b_4) \wedge (\neg b_1 \vee \neg b_3)$
- SAT solver says UNSAT
- Therefore, UNSAT

Summary

- The basic SMT solving uses a SAT solver as blackbox (needs 4 iterations)
- The improved SMT solving uses a SAT solver as blackbox, but add minimal conflict clauses with aid of a theory solver (needs 3 iterations).
- The further improved SMT solving does NOT a SAT solver as blackbox. It
 integrates a theory solver right into the SAT solver. Also, the theory solver
 guides the search of SAT solver (needs 2 iterations).

Names of the Approaches

- The basic approach : Off-line SMT
- The improved approach: Off-line SMT with minimal unsat core
- The further improved approach: On-line SMT (aka DPLL(T))

Details of the Algorithms

Boolean Abstraction

- The encoding function e takes an SMT formula F and return a boolean formula as follows:
 - o If F is of form $F_1 \wedge F_2$ (or $F_1 \vee F_2$) for some formula F_1, F_2 , then $e(F) = e(F_1) \wedge e(F_2) \text{ (or } e(F_1) \vee e(F_2))$
 - If F is of form $\neg F'$ for some formula F', then $e(F) = \neg e(F')$
 - If F is of form an SMT formula, then $e(F) = b \ \, \text{where} \, \, b \, \, \text{is a fresh propositional variable}$

Quiz

• What is the boolean abstraction of the formula?

$$x = y \land ((y = z \land \neg(x > 3)) \lor x + y \le 2)$$

Boolean Abstraction

- The function e^{-1} also exists (returns the original SMT formula for a given boolean formula)
 - e.g., $e(x = y \land ((y = z \land \neg(x > 3)) \lor x + y \le 2)) = b_1 \land ((b_2 \land \neg b_3) \lor b_4)$
 - $e^{-1}(b_1 \wedge ((b_2 \wedge \neg b_3) \vee b_4)) =$ $x = y \wedge ((y = z \wedge \neg (x > 3)) \vee x + y \le 2)$

- If an SMT formula F is satisfiable, then e(F) is also satisfiable.
 - Is the opposite also true?

Theory Conflict Clauses

- e(F) is also satisfiable \Rightarrow SMT formula F is satisfiable
 - o because the boolean abstraction abstracts away theory-related things
- We need to learn theory conflict clauses that prevent solutions of e(F) which are not satisfiable modulo theory.
- Two different approaches
 - Off-line (eager): Use a SAT solver as black-box
 - On-line (lazy): Integrate theory solver into the CDCL algorithm

Review: Overview of CDCL Algorithm

Offline SMT

```
function OfflineSMT (F)
    B := e(F)
    while (true) {
        A := CDCL(B)
        if (A is UNSAT) return UNSAT
        R := T-Solver(e^{-1}(A))
        if (R is SAT) return SAT
        B := B \wedge \neg A
```

Offline SMT with UNSAT core

UNSAT Core

- Given an unsatisfiable formula in CNF, a subset of clauses whose conjunction is still unsatisfiable is called an *unsatisfiable core* of the formula.
 - What are all unsat cores of $F: x = y \land x < y \land x > y \land x \neq y$?

- An unsatisfiable core is called a *minimal unsatisfiable core*, if every proper subset (allowing removal of any arbitrary clauses) of it is satisfiable.
 - \circ What are minimal unset cores of F?

Offline SMT with UNSAT core

```
function OfflineSMT (F)
    B := e(F)
    while (true) {
        A := CDCL(B)
         if (A is UNSAT) return UNSAT
        R := T-Solver(e^{-1}(A))
        if (R is SAT) return SAT
         U := MinUnsatCore(T-Solver(e^{-1}(A)))
        B := B \wedge \neg e(U)
```


Theory Propagation

- Theory solver can infer which literals are implied by current partial assignment and let SAT solver know
- In the example, $b_1 \implies b_2$ and $b_1 \land b_3 \implies b_4$ are added.
- These kinds of clauses implied by theory are called **theory propagation lemmas**.
- Adding theory propagation lemmas prevents bad assignments to boolean abstraction.

Summary

- Boolean abstraction
- Learning theory conflict clauses
- Off-line (eager) approaches
 - basic
 - with minimal unsat-core
- On-line (lazy) approach (DPLL(T))