
CSE4051: Program Verification

2025 Fall

Woosuk Lee

Instructor
Woosuk Lee

• Associate Professor, Hanyang University

• Ph.D from Seoul Nat’l Univ.

• Postdoc at UPenn and Georgia Tech

• Expertise: Programming languages, program

analysis, automated program generation

• Office: Rm 403, 3rd Engineering Building

• Office hour: Mon/Wed 10:30 - 12:00 AM

Time & Place
● Mon/Wed 9:00 - 10:15 AM

● Location

○ Rm 106 4th Engineering Building (Y304-0106)

● Course website: https://psl.hanyang.ac.kr/courses/cse4051_2025f

https://psl.hanyang.ac.kr/courses/cse4051_2025f

Why Learn?
● This course is about how to verify software will behave as expected.

● “Verify”: formally, (semi-)automatically, mathematically

● Why should we care correctness of SW?

○ Software is everywhere

○ Mission critical software: safety, security, reliability

○ Bugs can cause serious problems: financial losses, loss of life, etc

Software Bugs Can Be Catastrophic

● (1996) The arian-5 rocket exploded 37s after launch due to SW error (integer overflow).

● (1998) NASA’s Mars climate orbiter lost in space due to SW error (wrong unit conversion).

● (2012) $440 million loss due to error in trading software of Knight Capital (functional bug).

● (2014) Heartbleed bug in OpenSSL library exposed sensitive data of millions of users (buffer

overflow).

● … countless software errors in history

Software Failures in History

(1996) The Arian-5 rocket, whose development required 10 years and

$8 billion, exploded just 37s after launch due to software error.

(1998) NASA’s Mars climate orbiter lost in space. Cost: $125 million

(2000) Accidents in radiation therapy system. Cost: 8 patients died

(2007) Air control system shutdown in LA airport. Cost: 6,000

passengers stranded

(2012) Glitch in trading software of Knight Captal. Cost: $440 million

(2014) Airbag malfunction of Nissan vehicles. Cost: $1 million

vehicles recalled

. . . Countless software projects failed in history.

Woosuk Lee ENE4014 2024 Spring, Lecture 10 March 2, 2024 4 / 10

Topics
● (Part1) Computational logic: the use of logic to perform or reason about

computation

○ Propositional logic

○ First-order logic

● (Part2) SAT/SMT solvers: how to use tools to check satisfiability of logical

formulas and their internals

● (Part3) Program verification: proving correctness of programs using logical

reasoning

○ How to specify desired properties?

○ How to prove properties hold minimizing human effort

Course Schedule (Tentative) (contd.)
● Propositional logic (Part 1)

● Applications of SAT solvers (Part 2)

● CDCL algorithm (the core algorithm of SAT solvers) (Part 2)

● First-order logic (Part 1)

● First-order theories (Part 1)

● Applications of SMT solvers (Part 2)

● Overview of theory solvers (Part 2)

● Combining multiple theories (Part 2)

● DPLL(T) framework (the core algorithm of SMT solvers) (Part 2)

Course Schedule (Tentative)
● Hoare logic (Part 3)

● Verification conditions (Part 3)

● Proving partial correctness (Part 3)

● Proving total correctness (Part 3)

● Introduction to Dafny (Part 3)

Course Materials

● Aaron Bradley and Zohar Manna, The Calculus of Computation

● Daniel Kroening and Ofer Strichman, Decision Procedures: An Algorithmic Point of View

● Electronic versions of the books are available for download at lib.hanyang.ac.kr

http://lib.hanyang.ac.kr

Related Courses
● UT Austin, Automated Logical Reasoning by Prof. Işıl Dillig

● U of Washington, Computer-Aided Reasoning for Software by Prof. Emina Torlak

● Korea Univ. Computational Logic by Prof. Hakjoo Oh

http://www.cs.utexas.edu/~isil/

Grading
● Homework — 16%

○ 4-5 assignments

○ Late submissions will get penalty

● Mid exam — 37%

● Final exam — 37%

● Attendance — 10%

Assignments (Tentative)
● Writing down proofs of some theorems

● Problem solving using SAT/SMT solvers

● Building your own SAT solvers (your grades will be based on the performance

ranking of your implementations)

● Verifying properties of some algorithms using Dafny

Policy
● All programming assignments must be done individually.

○ Discussions with classmates are allowed, but you must write your own code.

○ No sharing of code or solutions.

● Code clone detectors will be used. Any detected plagiarism will result in a zero

for the entire assignment. Also, your grade will be lowered by one letter.

● Using LLMs is allowed at your own risk of plagiarism (i.e., if you submit code

generated by LLMs and it is detected as plagiarism, you will receive the penalty).

