CSE405 | : Program Verification

2025 Fall

Woosuk Lee

-

Instructor

Woosuk Lee

* Associate Professor, Hanyang University
* Ph.D from Seoul Nat’l| Univ.
* Postdoc at UPenn and Georgia Tech

* Expertise: Programming languages, program
analysis, automated program generation

* Office:Rm 403, 3rd Engineering Building

* Office hour: Mon/Wed 10:30 - 12:00 AM

Time & Place

e Mon/Wed 9:00 - 10:15 AM
e Location

© Rm 106 4th Engineering Building (Y304-0106)

e Course website: https://psl.hanyang.ac.kr/courses/cse4051 2025f

https://psl.hanyang.ac.kr/courses/cse4051_2025f

Why Learn?

e This course is about how to verify software will behave as expected.
e “Verify”: formally, (semi-)automatically, mathematically

e Why should we care correctness of SW?
o Software is everywhere
o Mission critical software: safety, security, reliability

O Bugs can cause serious problems: financial losses, loss of life, etc

Software Bugs Can Be Catastrophic

e (1996) The arian-5 rocket exploded 37s after launch due to SWV error (integer overflow).

e (1998) NASA'’s Mars climate orbiter lost in space due to SWV error (wrong unit conversion).

e (2012) $440 million loss due to error in trading software of Knight Capital (functional bug).

e (2014) Heartbleed bug in OpenSSL library exposed sensitive data of millions of users (buffer
overflow).

® ... countless software errors in history

Topics

e (Partl) Computational logic: the use of logic to perform or reason about
computation
O Propositional logic
o First-order logic

o (Part2) SAT/SMT solvers: how to use tools to check satisfiability of logical
formulas and their internals

e (Part3) Program verification: proving correctness of programs using logical
reasoning
o How to specify desired properties?

0 How to prove properties hold minimizing human effort

Course Schedule (Tentative) (contd.)

Propositional logic (Part |)

Applications of SAT solvers (Part 2)

CDCL algorithm (the core algorithm of SAT solvers) (Part 2)
First-order logic (Part |)

First-order theories (Part 1)

Applications of SMT solvers (Part 2)

Overview of theory solvers (Part 2)

Combining multiple theories (Part 2)

DPLL(T) framework (the core algorithm of SMT solvers) (Part 2)

Course Schedule (Tentative)

e Hoare logic (Part 3)

e \Verification conditions (Part 3)

e Proving partial correctness (Part 3)
e Proving total correctness (Part 3)

e Introduction to Dafny (Part 3)

Course Materials

Texts in Theoretical Computer Science

~ An EATCS Series Aaron R. Bradley

Zohar Manna

Daniel Kroening
Ofer Strichman

Decision
Procedures

An Algorithmic Point of View

The Calculus

of Computation

Second Edition

N o s g \/ . ‘
- - nnlicatinnce +a \Varificatin
VWILIY)ICAtIONS 1O vVermcatiol

@ Springer

@ Springer

e Aaron Bradley and Zohar Manna, The Calculus of Computation
e Daniel Kroening and Ofer Strichman, Decision Procedures: An Algorithmic Point of View

e Electronic versions of the books are available for download at lib.hanyang.ac.kr

http://lib.hanyang.ac.kr

Related Courses

e UT Austin,Automated Logical Reasoning by Prof. ISil Dillig
e U of Washington, Computer-Aided Reasoning for Software by Prof. Emina Torlak

e Korea Univ. Computational Logic by Prof. Hakjoo Oh

http://www.cs.utexas.edu/~isil/

Grading

e Homework — 16%

o 4-5 assignments

o Late submissions will get penalty
e Mid exam — 37%
e Final exam — 37%

e Attendance — |0%

Assighments (Tentative)

e Writing down proofs of some theorems

e Problem solving using SAT/SMT solvers

e Building your own SAT solvers (your grades will be based on the performance
ranking of your implementations)

e \Verifying properties of some algorithms using Dafny

Policy

e All programming assighments must be done individually.
o Discussions with classmates are allowed, but you must write your own code.
o No sharing of code or solutions.
e Code clone detectors will be used.Any detected plagiarism will result in a zero
for the entire assighment.Also, your grade will be lowered by one letter.
e Using LLMs is allowed at your own risk of plagiarism (i.e., if you submit code

generated by LLMs and it is detected as plagiarism, you will receive the penalty).

