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Program Generation
• Synthesis: automated generation from high-level specs. 
 
 
 
 

• Reduction: automated minimization from high-level specs.
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Probabilistic 
Model

Specification Program

Synthesizer

Can we learn the naturalness of programs and  
use it to accelerate program synthesis? 

Contribution: 
 
Integration of the probabilistic approach 
into the most popular synthesis paradigm 
CEGIS

Key Challenges: 
 
1.  How to guide the search given a statistical   
    model?  
 
2.  How to learn a good statistical model? 

Grand Ballroom CD at 14:50

Specification Synthesizer Program

Spec Reducer Correct & Minimal  
Program

Program



Applications

• Program synthesis

• Programming-by-example (e.g., Microsoft Excel FlashFill)

• Program verification 

• Program optimization

• Program reduction

• Fault localization 

• Test case minimization (e.g., minimizing GCC bugs)

• Attack surface reduction
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Key limitation:   
search not guided towards likely programs
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Kihong Heo*, Woosuk Lee*, Pardis Pashakhanloo and Mayur Naik  
CCS 2018: 25th ACM Conference on Computer and Communications 
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• Accelerating Search-Based Program Synthesis Using Learned 
Probabilistic Models 
Woosuk Lee, Kihong Heo, Rajeev Alur, Mayur Naik  
PLDI 2018: 39th ACM SIGPLAN Conference on Programming Language 
Design and Implementation, 2018.
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Effective Program Debloating via 
Reinforcement Learning 

(CCS’18)
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Growth of SW Complexity
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Linux Kernel

Si
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How can we reverse this trend?

Consequences of SW Bloat
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Maintainability SecurityPerformance

• Example: security vulnerability in GNU tar



State-of-the-Practice
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General-purpose tar 

- Out-of-the-box Linux


Customized tar 

- BusyBox Utility Package*


*https://busybox.net
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State-of-the-Practice
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General-purpose tar 

- Out-of-the-box Linux


- 97 cmd line options


- 45,778 LOC


- 13,227 statements


Customized tar 

- BusyBox Utility Package*


- 8 cmd line options


- 3,287 LOC


- 403 statements


*https://busybox.net



State-of-the-Practice

!12
*https://busybox.net

Manual

General-purpose tar 

- Out-of-the-box Linux


- 97 cmd line options


- 45,778 LOC


- 13,227 statements


- CVE-2016-6321

Customized tar 

- BusyBox Utility Package*


- 8 cmd line options


- 3,287 LOC


- 403 statements


- No known CVEs



Our Goal
General-purpose tar 

- Out-of-the-box Linux


- 97 cmd line options


- 45,778 LOC


- 13,227 statements


- CVE-2016-6321
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Customized tar 

- BusyBox Utility Package* 


- 8 cmd line options


- 3,287 LOC


- 403 statements


- No known CVEs

Automatic

High-level 
Spec

1,646

518

*https://busybox.net



Our Contribution

• minimality: trim code as aggressively as possible


• efficiency: scale to large programs


• robustness: avoid introducing new vulnerabilities


• naturalness: produce maintainable code


• generality: handle a variety of programs and specs
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Chisel: an automated program debloating system†

† http://chisel.cis.upenn.edu



int absolute_names; 
int ignore_zeros_option; 
struct tar_stat_info stat_info; 

char *safer_name_suffix (char *file_name, int link_target) { 
    int prefix_len; 
    char *p; 

    if (absolute_names) { 
        p = file_name; 
    } else { 
       /* CVE-2016-6321 */ 
       /* Incorrect sanitization if “file_name” contains ".." */ 
       ... 
    } 
    ... 
    return p; 
} 

void extract_archive() { 
    char *file_name = safer_name_suffix(stat_info.file_name, 0); 
    /* Overwrite “file_name” if exists */ 
    ... 
} 

void list_archive() { ... }

int absolute_names; 
int ignore_zeros_option; 
struct tar_stat_info stat_info; 

char *safer_name_suffix (char *file_name, int link_target) { 
    int prefix_len; 
    char *p; 

    if (absolute_names) { 
        p = file_name; 
    } else { 
       /* CVE-2016-6321 */ 
       /* Incorrect sanitization if “file_name” contains ".." */ 
       ... 
    } 
    ... 
    return p; 
} 

void extract_archive() { 
    char *file_name = safer_name_suffix(stat_info.file_name, 0); 
    /* Overwrite “file_name” if exists */ 
    ... 
} 

void list_archive() { ... }

void read_and(void *(do_something)(void)) { 
    enum read_header status; 
    while (...) { 
        status = read_header(); 
        switch (status) { 
        case HEADER_SUCCESS: (*do_something)(); continue; 
        case HEADER_ZERO_BLOCK: 
          if (ignore_zeros_option) continue; 
          else break; 
        ... 
        default: break; 
        } 
    } 
    ... 
} 

/* Supports all options: -x, -t, -P, -i, ... */ 
int main(int argc, char **argv) { 
    int optchar; 
    while (optchar = getopt_long(argc, argv) != -1) { 
        switch(optchar) { 
        case 'x': read_and(&extract_archive); break; 
        case 't': read_and(&list_archive); break; 
        case 'P': absolute_names = 1; break; 
        case 'i': ignore_zeros_option = 1; break; 
        ... 
        } 
    } 
    ... 
}

Reduced version of tar-1.14
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void read_and(void *(do_something)(void)) { 
    enum read_header status; 
    while (...) { 
        status = read_header(); 
        switch (status) { 
        case HEADER_SUCCESS: (*do_something)(); continue; 
        case HEADER_ZERO_BLOCK: 
          if (ignore_zeros_option) continue; 
          else break; 
        ... 
        default: break; 
        } 
    } 
    ... 
} 

/* Supports all options: -x, -t, -P, -i, ... */ 
int main(int argc, char **argv) { 
    int optchar; 
    while (optchar = getopt_long(argc, argv) != -1) { 
        switch(optchar) { 
        case 'x': read_and(&extract_archive); break; 
        case 't': read_and(&list_archive); break; 
        case 'P': absolute_names = 1; break; 
        case 'i': ignore_zeros_option = 1; break; 
        ... 
        } 
    } 
    ... 
}

Global variable declarations removed

Code containing CVE removed

Overwriting functionalities removed

Unnecessary functionalities removed

Unsupported options removed
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CVE-2016-6321

• tar uses a sanitization mechanism to handle archives 
containing ‘../’ in their target pathname 

• (e.g., ‘a/../b’ → ‘b’)

• This sanitization is flawed, and attackers can exploit it. 

Exploit
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• Suppose the root user intends to only extract a file from a 
downloaded archive and write to ‘/etc/motd’ (at the root dir).

$> tar xf malicious.tar etc/motd 

• “malicious.tar” contains an entry whose pathname is  
‘etc/motd/../etc/shadow’

• The file ‘/etc/shadow’ (containing actual passwords in 
encrypted format for users’ (including the root) accounts) is 
changed (may lead to a full system compromise).

• Note that ‘/etc/shadow’ should not be extracted when 
asking for ‘/etc/motd’.

Exploit



Exploit

Security vulnerability (path traversal): CVE-2016-6321

root:/$ _ cat etc/shadow
root:l1k4qj1xQWErkzQW1:0:99999:7:::
root:/$ _ tar xv malicious.tar etc/motd 
root:/$ _ cat etc/shadow
Your system has been compromised :)
root:/$ _ 

!18

*https://seclists.org/fulldisclosure/2016/Oct/96



Exploit Removed

Original Ver. of Tar 
45,778 LOC

Debloated Ver. of Tar 
1,646 LOC

root:/$ _ cat etc/shadow
root:l1k4qj1xQWErkzQW1:0:99999:7:::     
root:/$ _ tar xv malicious.tar etc/motd 
root:/$ _ cat etc/shadow
root:l1k4qj1xQWErkzQW1:0:99999:7:::
root:/$ _ 
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System Architecture

Program

Spec

Program Debloating

Correct
Reduced
Program

Static

Dynamic

Validation

Success

Failure
Augmentation

LearnerTrimmer

Checker w.r.t.
Spec

Reduced
Program
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Key Questions
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Reduced
Program

1. How to provide high-level specification?
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2. How to effectively reduce programs?

1. How to provide high-level specification?

Key Questions
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2. How to effectively reduce programs? 3. How to validate robustness?

1. How to provide high-level specification?

Key Questions



High-level Specification
#!/bin/bash 

function compile { 
  clang -o tar.debloat tar-1.14.c 
  return $? 
} 

# tests for the desired functionalities 
function desired { 
  # 1. archiving multiple files 
  touch foo bar 
  ./tar.debloat cf foo.tar foo bar 
  rm foo bar 
  ./tar.debloat xf foo.tar 
  test -f foo -a -f bar || exit 1 

  # 2. extracting from stdin 
  touch foo 
  ./tar.debloat cf foo.tar foo 
  rm foo 
  cat foo.tar | ./tar.debloat x 
  test -f foo || exit 1 
   
  # other tests 
  … 
  return 0 
}

# tests for the undesired functionalities 
function undesired { 
  for test_script in `ls other_tests/*.sh` 
  do 
    { sh -x -e $test_script; } >& log 
    grep 'Segmentation fault' log && exit 1 
  done 
  return 0 
} 

compile || exit 1 
core || exit 1 
non_core || exit 1

!24



#!/bin/bash 

function compile { 
  clang -o tar.debloat tar-1.14.c 
  return $? 
} 

# tests for the desired functionalities 
function desired { 
  # 1. archiving multiple files 
  touch foo bar 
  ./tar.debloat cf foo.tar foo bar 
  rm foo bar 
  ./tar.debloat xf foo.tar 
  test -f foo -a -f bar || exit 1 

  # 2. extracting from stdin 
  touch foo 
  ./tar.debloat cf foo.tar foo 
  rm foo 
  cat foo.tar | ./tar.debloat x 
  test -f foo || exit 1 
   
  # other tests 
  … 
  return 0 
}

High-level Specification

1. The program is compilable.
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# tests for the undesired functionalities 
function undesired { 
  for test_script in `ls other_tests/*.sh` 
  do 
    { sh -x -e $test_script; } >& log 
    grep 'Segmentation fault' log && exit 1 
  done 
  return 0 
} 

compile || exit 1 
core || exit 1 
non_core || exit 1



# tests for the undesired functionalities 
function undesired { 
  for test_script in `ls other_tests/*.sh` 
  do 
    { sh -x -e $test_script; } >& log 
    grep 'Segmentation fault' log && exit 1 
  done 
  return 0 
} 

compile || exit 1 
core || exit 1 
non_core || exit 1

#!/bin/bash 

function compile { 
  clang -o tar.debloat tar-1.14.c 
  return $? 
} 

# tests for the desired functionalities 
function desired { 
  # 1. archiving multiple files 
  touch foo bar 
  ./tar.debloat cf foo.tar foo bar 
  rm foo bar 
  ./tar.debloat xf foo.tar 
  test -f foo -a -f bar || exit 1 

  # 2. extracting from stdin 
  touch foo 
  ./tar.debloat cf foo.tar foo 
  rm foo 
  cat foo.tar | ./tar.debloat x 
  test -f foo || exit 1 
   
  # other tests 
  … 
  return 0 
}

High-level Specification
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2. The program produces the same results 
with the desired functionalities. 

(e.g., using regression test suites)



# tests for the undesired functionalities 
function undesired { 
  for test_script in `ls other_tests/*.sh` 
  do 
    { sh -x -e $test_script; } >& log 
    grep 'Segmentation fault' log && exit 1 
  done 
  return 0 
} 

compile || exit 1 
core || exit 1 
non_core || exit 1

High-level Specification
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#!/bin/bash 

function compile { 
  clang -o tar.debloat tar-1.14.c 
  return $? 
} 

# tests for the desired functionalities 
function desired { 
  # 1. archiving multiple files 
  touch foo bar 
  ./tar.debloat cf foo.tar foo bar 
  rm foo bar 
  ./tar.debloat xf foo.tar 
  test -f foo -a -f bar || exit 1 

  # 2. extracting from stdin 
  touch foo 
  ./tar.debloat cf foo.tar foo 
  rm foo 
  cat foo.tar | ./tar.debloat x 
  test -f foo || exit 1 
   
  # other tests 
  … 
  return 0 
}

3. The program does not crash 
with the undesired functionalities. 

(e.g., using Clang sanitizers)
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1. How to provide high-level specification?

2. How to effectively reduce programs? 3. How to validate robustness?



DD: Key Challenges
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Pi

Candidate for Pi+1

Oracle 
(test script)

Nontrivial cost 
(e.g., compile, testing)

Blind search  
through a large space

[Zeller and Hildebrandt, 2002]

• Oracle O takes a program and returns Pass or Fail


• Given a program P, find a 1-minimal P* such that O(P*) = Pass


• 1-minimal: removing any element of P* does not pass O
• Time complexity: O(|P|2)



Our Solution: 
Learning-guided DD
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• Learn a policy for DD using reinforcement learning (RL)


• Guide the search based on the prediction of the learned policy


• Still guarantee 1-minimality and O(|P|2) time complexity


• Discard nonsensical programs upfront 
(e.g., invalid syntax, no main, uninitialized variables, etc)



Our Solution: 
Learning-guided DD
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Example
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/* mkdir-5.2.1 */ 
int xstrtol(char *s, char **ptr, int strtol_base, strtol_t *val, 
            char *valid_suffixes) { 
 1: err = 0; 
 2: assert(0 <= strtol_base && strtol_base <= 36); 
 3: p = ptr ? ptr : &t_ptr; 
 4: q = s; 
 5: while(ISSPACE (*q)) ++q; 
 6: if (*q == ‘-‘) return LONGINT_INVALID;   
 7: errno = 0; 
 8: tmp = strtol(s, p, strtol_base); 
 9: if (*p == s) { … } 
10: if (!valid_suffixes) { … } 
11: if (**p != ‘\0’) { … } 
12: *val = tmp; 
13: return err; 
}

: removed code
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/* mkdir-5.2.1 */ 
int xstrtol(char *s, char **ptr, int strtol_base, strtol_t *val, 
            char *valid_suffixes) { 
 1: err = 0; 
 2: assert(0 <= strtol_base && strtol_base <= 36); 
 3: p = ptr ? ptr : &t_ptr; 
 4: q = s; 
 5: while(ISSPACE (*q)) ++q; 
 6: if (*q == ‘-‘) return LONGINT_INVALID;  
 7: errno = 0; 
 8: tmp = strtol(s, p, strtol_base); 
 9: if (*p == s) { … } 
10: if (!valid_suffixes) { … } 
11: if (**p != ‘\0’) { … } 
12: *val = tmp; 
13: return err; 
}

Example

Minimal Desired Program:
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Unguided Delta-Debugging Guided Delta-Debugging
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Unguided Delta-Debugging Guided Delta-Debugging
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Unguided Delta-Debugging Guided Delta-Debugging
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Unguided Delta-Debugging Guided Delta-Debugging
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Unguided Delta-Debugging Guided Delta-Debugging
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Unguided Delta-Debugging Guided Delta-Debugging
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Unguided Delta-Debugging Guided Delta-Debugging
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Unguided Delta-Debugging Guided Delta-Debugging
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Unguided Delta-Debugging Guided Delta-Debugging
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Key Questions

Program
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Program Debloating

Correct
Reduced
Program

Static

Dynamic
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Success

Failure
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LearnerTrimmer

Checker w.r.t.
Spec

Reduced
Program

1. How to provide high-level specification?

2. How to effectively reduce programs? 3. How to validate robustness?



Validation

• Check the robustness of the reduced program


• preventing newly introduced security holes


• Sound static buffer overflow analyzer (Sparrow)


• #alarms in tar: 1,290 ➞ 19 (feasible for manual inspection)


• Random fuzzer (AFL)


• no crashing input found in 3 days for tar
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Augmentation

/* grep-2.19 */ 
void add_tok (token t) { 
    /* removed in the first trial and restored after augmentation */ 
    if (dfa->talloc == dfa->tindex) 
        dfa->tokens = (token *) realloc (/* large size */); 
    *(dfa−>tokens + (dfa−>tindex++)) = t; 
}

!45

• Augment the test script with crashing inputs by AFL


• Typically converges in up to 3 iterations in practice


• But, may be incomplete



Talk Outline

• Motivation


• System Architecture


• Evaluation 

• Conclusion
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Experimental Setup

• 10 widely used UNIX utility programs (13—90 KLOC)


• each program has a known CVE


• remove unreachable code by static analysis upfront


• Specification:


• supporting the same cmd line options as BusyBox


• with the test suites by the original developers
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Reduction Time
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Reduction Time
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Reduction Time
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Conclusion
• Chisel: automated software debloating system


• tractable search via learning-guided delta debugging


• security hardening by removing undesired features


• robustness via static & dynamic analyses


• http://chisel.cis.upenn.edu


• In the paper,


• reduction algorithm details

• learning a debloating policy

• engineering issues and design choices 


Acknowledgment: Total Platform Cyber Protection (TPCP)
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http://chisel.cis.upenn.edu


Accelerating Search-Based Program 
Synthesis Using Learned Probabilistic Models 

(PLDI’18)
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Syntax-Guided Program Synthesis (SyGuS)†

 55

Program
Syntactic constraint

Semantic constraint

Synthesizer

Specification

f(1) = 2 ^ f(3) = 6
<latexit sha1_base64="k8b/+EcyFUK+pATljW8DcAh/RQ0=">AAACAHicbVDLSsNAFL3xWesr6sKFm8Ei1E1JqqgboejGZQX7gDaUyXTSDp1MwsxEKKEbf8WNC0Xc+hnu/BsnbRbaemDg3HPu5c49fsyZ0o7zbS0tr6yurRc2iptb2zu79t5+U0WJJLRBIh7Jto8V5UzQhmaa03YsKQ59Tlv+6DbzW49UKhaJBz2OqRfigWABI1gbqWcfBmX3FF2jKupyLPooKJ9l5UXPLjkVZwq0SNyclCBHvWd/dfsRSUIqNOFYqY7rxNpLsdSMcDopdhNFY0xGeEA7hgocUuWl0wMm6MQoZnckzRMaTdXfEykOlRqHvukMsR6qeS8T//M6iQ6uvJSJONFUkNmiIOFIRyhLA/WZpETzsSGYSGb+isgQS0y0yaxoQnDnT14kzWrFdSru/XmpdpPHUYAjOIYyuHAJNbiDOjSAwASe4RXerCfrxXq3PmatS1Y+cwB/YH3+AFBQkwA=</latexit><latexit sha1_base64="k8b/+EcyFUK+pATljW8DcAh/RQ0=">AAACAHicbVDLSsNAFL3xWesr6sKFm8Ei1E1JqqgboejGZQX7gDaUyXTSDp1MwsxEKKEbf8WNC0Xc+hnu/BsnbRbaemDg3HPu5c49fsyZ0o7zbS0tr6yurRc2iptb2zu79t5+U0WJJLRBIh7Jto8V5UzQhmaa03YsKQ59Tlv+6DbzW49UKhaJBz2OqRfigWABI1gbqWcfBmX3FF2jKupyLPooKJ9l5UXPLjkVZwq0SNyclCBHvWd/dfsRSUIqNOFYqY7rxNpLsdSMcDopdhNFY0xGeEA7hgocUuWl0wMm6MQoZnckzRMaTdXfEykOlRqHvukMsR6qeS8T//M6iQ6uvJSJONFUkNmiIOFIRyhLA/WZpETzsSGYSGb+isgQS0y0yaxoQnDnT14kzWrFdSru/XmpdpPHUYAjOIYyuHAJNbiDOjSAwASe4RXerCfrxXq3PmatS1Y+cwB/YH3+AFBQkwA=</latexit><latexit sha1_base64="k8b/+EcyFUK+pATljW8DcAh/RQ0=">AAACAHicbVDLSsNAFL3xWesr6sKFm8Ei1E1JqqgboejGZQX7gDaUyXTSDp1MwsxEKKEbf8WNC0Xc+hnu/BsnbRbaemDg3HPu5c49fsyZ0o7zbS0tr6yurRc2iptb2zu79t5+U0WJJLRBIh7Jto8V5UzQhmaa03YsKQ59Tlv+6DbzW49UKhaJBz2OqRfigWABI1gbqWcfBmX3FF2jKupyLPooKJ9l5UXPLjkVZwq0SNyclCBHvWd/dfsRSUIqNOFYqY7rxNpLsdSMcDopdhNFY0xGeEA7hgocUuWl0wMm6MQoZnckzRMaTdXfEykOlRqHvukMsR6qeS8T//M6iQ6uvJSJONFUkNmiIOFIRyhLA/WZpETzsSGYSGb+isgQS0y0yaxoQnDnT14kzWrFdSru/XmpdpPHUYAjOIYyuHAJNbiDOjSAwASe4RXerCfrxXq3PmatS1Y+cwB/YH3+AFBQkwA=</latexit><latexit sha1_base64="k8b/+EcyFUK+pATljW8DcAh/RQ0=">AAACAHicbVDLSsNAFL3xWesr6sKFm8Ei1E1JqqgboejGZQX7gDaUyXTSDp1MwsxEKKEbf8WNC0Xc+hnu/BsnbRbaemDg3HPu5c49fsyZ0o7zbS0tr6yurRc2iptb2zu79t5+U0WJJLRBIh7Jto8V5UzQhmaa03YsKQ59Tlv+6DbzW49UKhaJBz2OqRfigWABI1gbqWcfBmX3FF2jKupyLPooKJ9l5UXPLjkVZwq0SNyclCBHvWd/dfsRSUIqNOFYqY7rxNpLsdSMcDopdhNFY0xGeEA7hgocUuWl0wMm6MQoZnckzRMaTdXfEykOlRqHvukMsR6qeS8T//M6iQ6uvJSJONFUkNmiIOFIRyhLA/WZpETzsSGYSGb+isgQS0y0yaxoQnDnT14kzWrFdSru/XmpdpPHUYAjOIYyuHAJNbiDOjSAwASe4RXerCfrxXq3PmatS1Y+cwB/YH3+AFBQkwA=</latexit>

S ! x | S ⇥ S | 1 | 2 | · · ·
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f(x) = 2x
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†http://www.sygus.org

http://www.sygus.org


Applications of Program Synthesis
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End-user Programming 
(e.g., Excel Flash Fill)

Program Repair

Others

• Invariant generation
• Super-optimization
• Autograding for  

coding assignment
…Circuit Transformation



Example
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Example: Programming by Examples

• Find a program P for bit-vector transformation such that

• P is constructed from standard bit-vector operations 
( |, &, ~, +, -, <<, >>, 0, 1, … )

• P is consistent with the following input-output examples  
( 00101 → 00100,   
  10111 → 10000,   
  00111 → 00000 )

• Resets rightmost substring of contiguous 1’s to 0’s. 

• Desired solution: x & ( 1 + ( x | (x - 1) ) )



Existing General-Purpose Strategies
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• Enumerative: search with pruning
  - EUSolver: Udupa et al. (PLDI’13, TACAS’17) 

• Symbolic: constraint solving
  - CVC4: Reynolds et al. (CAV’15, CAV’18, IJCAR’18) 

• Stochastic: probabilistic walk
  - STOKE: Schkufza et al. (ASPLOS’13, ASPLOS’17)



Key limitation:   
search not guided towards likely programs

Existing General-Purpose Strategies
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• Enumerative: search with pruning
  - EUSolver: Udupa et al. (PLDI’13, TACAS’17) 

• Symbolic: constraint solving
  - CVC4: Reynolds et al. (CAV’15, CAV’18, IJCAR’18) 

• Stochastic: probabilistic walk
  - STOKE: Schkufza et al. (ASPLOS’13, ASPLOS’17)



Statistical Regularities in Programs

• Programs contain repetitive and predictable patterns [Hindle et al. ICSE’12] 

  for (i = 0; i < 100; ??) 

• Statistical program models define a probability distribution over programs

Pr (?? → i++ | for (i = 0; i < 100; ??) )  =  0.80  
Pr (?? → i-- | for (i = 0; i < 100; ??) )  =  0.01

  - e.g., n-gram, neural network, probabilistic context-free grammar (PCFG), …

• Many applications: code completion, deobfuscation, program repair, etc.
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Exploiting Statistical Regularities

Key Challenges:

1. How to guide the search given a statistical 
model?

2. How to learn a good statistical model? 
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Can we leverage statistical program models  
to accelerate program synthesis? 



Our Contributions
• A general approach to accelerate CEGIS-based program synthesis

  - by using a probabilistic model to guide the search towards likely programs  
  - supports a wide range of models (e.g., n-gram, PCFG, PHOG, neural 
nets, …)

• Transfer learning-based method to mitigate overfitting

• Tool (Euphony) and evaluation on widely applicable domains

    https://github.com/wslee/euphony
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Abstract
A key challenge in program synthesis concerns how to effi-
ciently search for the desired program in the space of possi-
ble programs. We propose a general approach to accelerate
search-based program synthesis by biasing the search to-
wards likely programs. Our approach targets a standard for-
mulation, syntax-guided synthesis (SyGuS), by extending the
grammar of possible programs with a probabilistic model dic-
tating the likelihood of each program.We develop a weighted
search algorithm to efficiently enumerate programs in order
of their likelihood. We also propose a method based on trans-
fer learning that enables to effectively learn a powerful model,
called probabilistic higher order grammar, from known solu-
tions in a domain. We have implemented our approach in a
tool called Euphony and evaluate it on SyGuS benchmark
problems from a variety of domains. We show that Euphony
can learn good models using easily obtainable solutions,
and achieves significant performance gains over existing
general-purpose as well as domain-specific synthesizers.

CCS Concepts • Computing methodologies → Trans-
fer learning; • Software and its engineering→Domain
specific languages; Programming by example;

Keywords Synthesis, Domain-specific languages, Statisti-
cal methods, Transfer learning
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1 Introduction
The goal of program synthesis is to automatically synthesize
a program that satisfies a given high-level specification. A
central challenge in program synthesis concerns how to effi-
ciently search for the desired program in the space of possible
programs. Various strategies have been proposed to address
this challenge [3, 4, 12, 16, 30]. As a result, recent years have
witnessed a surge of interest in applying this technology to
a wide range of problems, including end-user programming
[11], intelligent tutoring [25], circuit transformation [8], and
program repair [18], among many others.
Despite significant strides, however, a key limitation of

these strategies is that they do not bias the search towards
likely programs. As a result, they explore many undesirable
candidates in practice, which hinders their performance and
limits the kinds of programs they are able to synthesize.

It is well known that desired programs contain repetitive
and predictable patterns [14]. We propose a new approach
to accelerate search-based program synthesis based on this
observation. Our key insight is to learn a probabilistic model
of programs and use it to guide the search. To this end, our
approach modularly addresses two orthogonal but comple-
mentary challenges: 1) how to guide the search given a proba-
bilistic model, and 2) how to learn a good probabilistic model.
We next elaborate on each of these challenges.

To address the first challenge, we target a standard formu-
lation, syntax-guided synthesis (SyGuS) [3], that has estab-
lished various synthesis benchmarks through annual compe-
titions. SyGuS employs a context-free grammar to describe
the space of possible programs. We extend the grammar
with a probabilistic model that determines the likelihood
of each program. We reduce the problem of enumerating
programs by likelihood to the problem of enumerating target
nodes by shortest distance from a source node in an infinite
weighted graph. We solve the resulting problem efficiently
using A* search [13]. While A* is significantly faster than
other path finding algorithms, however, it requires a good
cost-estimating heuristic to guide its search. We show how
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-  Enumerates candidates in order of likelihood

-  Supports a wide range of probabilistic 
models
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-  Problem: overfitting

-  Our solution: generalize to unseen programs better using a  
     feature map designed by domain expert
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• Goal: a function      that replaces a hyphen (-) by a dot (.) in a given 
string 

•          Specification

   Syntactic specification: 

    Semantic specification:

•           Solution
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The trained E������ is able to solve 236 new problems
in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [10], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.

Iter. Enumerated programs Counterex.

1 “.” “-.”
2 “.”, “-”,x|   {z   }

size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                  {z                                  }
size 3

“308-916”

3 “.”, “-”,x , · · · ,x + “.”, Rep(x , “.”, “-”), Rep(x , “-”, “.”)

Table 1. Enumeration using an unguided search.

Iter. Enumerated programs Counterex.

1 x + “.” “-.”
2 x + “.”,x + “-”, · · · , Rep(x , “-”, “.”)

Table 2. Enumeration using our weighted search.

We next illustrate how a typical search-based synthesizer
�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

Table 1 shows an execution of a state-of-the-art such algo-
rithm [27] on our example problem. It enumerates programs
generated by the given grammar in order of size. We step
through its execution of the CEGIS iterations.
In the �rst iteration, the candidate program proposed is

the �rst program that is generated, the expression “.”, because
pts is empty. Checking the correctness of this program with
respect to speci�cation 2 yields a counterexample input “-.”,
since the output of expression “.” on this input does not match
the desired output “..”. As a result, pts becomes {“-.”}.
In the second iteration, the algorithm �rst enumerates

all expressions of size 1. Since none of them are correct on
pts, it proceeds to enumerate expressions of size 3 (there
are no expressions of size 2). Finally, the algorithm reaches
the expression “.” + “.” which is correct on pts. However, it
still fails to verify and yields counterexample input “308-916”
(because the desired output is “308.916” whereas the output
is “..”). As a result, pts becomes {“-.”, “308-916”}.
In the third iteration, the algorithm eventually �nds the

desired program Rep(x , “-”, “.”), which is correct on with re-
spect to the given speci�cation.
In general, the number of programs enumerated by the

above algorithm grows exponentially in program size, de-
spite a powerful optimization to avoid enumerating unneces-
sary programs that are equivalent under inputs in pts. Our
main hypothesis is that existing search-based synthesizers
su�er this limitation because they assume that all possible
programs are equally likely. For example, “.” + “.” explored in
the second iteration above is an unlikely program.

2

f x

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

PL’17, , New York, NY, USA Anon.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

The trained E������ is able to solve 236 new problems
in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [10], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.

Iter. Enumerated programs Counterex.

1 “.” “-.”
2 “.”, “-”,x|   {z   }

size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                  {z                                  }
size 3

“308-916”

3 “.”, “-”,x , · · · ,x + “.”, Rep(x , “.”, “-”), Rep(x , “-”, “.”)

Table 1. Enumeration using an unguided search.

Iter. Enumerated programs Counterex.

1 x + “.” “-.”
2 x + “.”,x + “-”, · · · , Rep(x , “-”, “.”)

Table 2. Enumeration using our weighted search.

We next illustrate how a typical search-based synthesizer
�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

Table 1 shows an execution of a state-of-the-art such algo-
rithm [27] on our example problem. It enumerates programs
generated by the given grammar in order of size. We step
through its execution of the CEGIS iterations.
In the �rst iteration, the candidate program proposed is

the �rst program that is generated, the expression “.”, because
pts is empty. Checking the correctness of this program with
respect to speci�cation 2 yields a counterexample input “-.”,
since the output of expression “.” on this input does not match
the desired output “..”. As a result, pts becomes {“-.”}.
In the second iteration, the algorithm �rst enumerates

all expressions of size 1. Since none of them are correct on
pts, it proceeds to enumerate expressions of size 3 (there
are no expressions of size 2). Finally, the algorithm reaches
the expression “.” + “.” which is correct on pts. However, it
still fails to verify and yields counterexample input “308-916”
(because the desired output is “308.916” whereas the output
is “..”). As a result, pts becomes {“-.”, “308-916”}.
In the third iteration, the algorithm eventually �nds the

desired program Rep(x , “-”, “.”), which is correct on with re-
spect to the given speci�cation.
In general, the number of programs enumerated by the

above algorithm grows exponentially in program size, de-
spite a powerful optimization to avoid enumerating unneces-
sary programs that are equivalent under inputs in pts. Our
main hypothesis is that existing search-based synthesizers
su�er this limitation because they assume that all possible
programs are equally likely. For example, “.” + “.” explored in
the second iteration above is an unlikely program.
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The trained E������ is able to solve 236 new problems
in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [10], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.

Iter. Enumerated programs Counterex.

1 “.” “-.”
2 “.”, “-”,x|   {z   }

size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                  {z                                  }
size 3

“308-916”

3 “.”, “-”,x , · · · ,x + “.”, Rep(x , “.”, “-”), Rep(x , “-”, “.”)

Table 1. Enumeration using an unguided search.

Iter. Enumerated programs Counterex.

1 x + “.” “-.”
2 x + “.”,x + “-”, · · · , Rep(x , “-”, “.”)

Table 2. Enumeration using our weighted search.

We next illustrate how a typical search-based synthesizer
�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

Table 1 shows an execution of a state-of-the-art such algo-
rithm [27] on our example problem. It enumerates programs
generated by the given grammar in order of size. We step
through its execution of the CEGIS iterations.
In the �rst iteration, the candidate program proposed is

the �rst program that is generated, the expression “.”, because
pts is empty. Checking the correctness of this program with
respect to speci�cation 2 yields a counterexample input “-.”,
since the output of expression “.” on this input does not match
the desired output “..”. As a result, pts becomes {“-.”}.
In the second iteration, the algorithm �rst enumerates

all expressions of size 1. Since none of them are correct on
pts, it proceeds to enumerate expressions of size 3 (there
are no expressions of size 2). Finally, the algorithm reaches
the expression “.” + “.” which is correct on pts. However, it
still fails to verify and yields counterexample input “308-916”
(because the desired output is “308.916” whereas the output
is “..”). As a result, pts becomes {“-.”, “308-916”}.
In the third iteration, the algorithm eventually �nds the

desired program Rep(x , “-”, “.”), which is correct on with re-
spect to the given speci�cation.
In general, the number of programs enumerated by the

above algorithm grows exponentially in program size, de-
spite a powerful optimization to avoid enumerating unneces-
sary programs that are equivalent under inputs in pts. Our
main hypothesis is that existing search-based synthesizers
su�er this limitation because they assume that all possible
programs are equally likely. For example, “.” + “.” explored in
the second iteration above is an unlikely program.
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context-free grammar [21], probabilistic higher-order gram-
mar [6], a log-bilinear model [1], a decision tree model [28],
and a neural network [5].
To address the second challenge, we target probabilistic

higher order grammars (PHOG) [6], a powerful probabilistic
model that generalizes probabilistic context-free grammars
by allowing conditioning of each production rule beyond the
parent non-terminal. It thereby allows capturing rich con-
texts to e�ectively distinguish likely programs from unlikely
ones. We learn the model from known solutions of synthesis
problems that were solved by existing techniques. A direct
application, however, su�ers from over�tting the model to
speci�cations in those synthesis problems. We propose a
novel learning method inspired by transfer learning [23, 24]
to learn the model from features of speci�cations. The fea-
tures are provided by a domain expert and are akin to domain
knowledge used to guide synthesis in existing techniques,
such as features of input-output examples [21] or abstract
semantics of programs [33].
We implemented our approach in a tool called E������

that we built atop EUS����� [4], an open-source state-of-the-
art search-based synthesizer. We evaluate E������ on 1,167
benchmark problems from three widely applicable domains:
string manipulation (end-user programming problems), bit-
vector manipulation (e�cient low-level algorithms), and cir-
cuit transformation (attack-resistant crypto circuits). For
each of these domains, we observe that it su�ces to train
E������ using easily obtainable solutions—those that can
be generated by EUS����� in under 10 minutes. These solu-
tions comprise 762 (⇠ 65%) of our benchmark problems.
The trained E������ is able to solve 236 new problems

in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [12], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.

Iter. Enumerated programs Counterex.

1 “.” “-.”

2 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                    {z                                    }
size 3

“308-916”

3 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, · · · ,x + “.”|                   {z                   }
size 3

, Rep(x , “.”, “-”), Rep(x , “-”, “.”)|                                  {z                                  }
size 4

Table 1. Enumeration using an unguided search.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

S =) S + S =) x + S =) x + “.”
where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).
We next illustrate how a typical search-based synthesizer

�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.

* f(“-.”) = “..”
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Iter. Enumerated programs Counterex.

1 “.” “-.”

2 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                    {z                                    }
size 3

“308-916”

3 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, · · · ,x + “.”|                   {z                   }
size 3

, Rep(x , “.”, “-”), Rep(x , “-”, “.”)|                                  {z                                  }
size 4

Table 1. Enumeration using an unguided search.

Iter. Enumerated programs Counterex.

1 x + “.”|   {z   }
prob. 0.27

“-.”

2 x + “.”|{z}
prob. 0.27

, x + “-”| {z }
prob. 0.21

, · · · , Rep(x , “-”, “.”)|             {z             }
prob. 0.11

Table 2. Enumeration using our weighted search.

In the second iteration, the algorithm �rst enumerates
all expressions of size 1. Since none of them are correct on
pts, it proceeds to enumerate expressions of size 3 (there
are no expressions of size 2). Finally, the algorithm reaches
the expression “.” + “.” which is correct on pts. However, it
still fails to verify and yields counterexample input “308-916”
(because the desired output is “308.916” whereas the output
is “..”). As a result, pts becomes {“-.”, “308-916”}.
In the third iteration, the algorithm eventually �nds the

desired program Rep(x , “-”, “.”), which is correct on with re-
spect to the given speci�cation.
In general, the number of programs enumerated by the

above algorithm grows exponentially in program size, de-
spite a powerful optimization to avoid enumerating unneces-
sary programs that are equivalent under inputs in pts. Our
main hypothesis is that existing search-based synthesizers
su�er this limitation because they assume that all possible
programs are equally likely. For example, “.” + “.” explored in
the second iteration above is an unlikely program.
Our main idea is to guide the search towards likely pro-

grams. We propose a weighted enumerative algorithm to
achieve this objective. Table 2 depicts an execution of this
algorithm on our example. Our algorithm is essentially the
same as the existing enumerative algorithm except that it
enumerates programs in order of likelihood instead of size.
Therefore, instead of enumerating all the smallest expres-
sions (e.g., “.”, “-”, x ), it �rst proposes x + “.”, which is found
only in the third iteration by the existing enumerative search.
In the next iteration, it quickly �nds the solution because it
avoids enumerating many unlikely programs (e.g., “.” + “.”).

Figure 1. Graph of sentential forms derived from a PCFG.

2.1 A* Search for Weighted Enumeration
The �rst key contribution of our approach is an e�cient al-
gorithm based on A* search to enumerate programs in order
of decreasing probability. The algorithm is applicable to a
wide range of statistical program models, characterized in
Section 3. Figure 1(a) depicts one such model called PCFG
for the CFG of our synthesis problem, shown in (1). The
model takes a current non-empty sequence of terminal/non-
terminal symbols (i.e., a sentential form) and returns a prob-
ability for each production rule. For example, the probability
of the production rule S ! “.” is 0.72 when the current
sentential form is Rep(x , “-”, S).

Our algorithm conceptually works on a directed weighted
graph—constructed on demand—of sentential forms derived
from the given model. An example such graph for the PCFG
model above is shown in Figure 1(b). Each node of the graph
represents a sentential form that can be derived from the
start symbol S of the grammar. Each directed edge si ! sj
means that si expands to sj by applying a production rule to
the leftmost non-terminal symbol in si . Each edge is asso-
ciated with a real-valued weight which is the negative log
probability of its corresponding production rule provided by
the given model. The sum of the weights on a path from S
to a goal node is the negative log probability of the corre-
sponding program. Then, enumerating programs in order
of decreasing probability corresponds to enumerating goal
nodes by shortest (weighted) distance from the source node.

A straightforward way to perform this enumeration is to
employ uniform cost search algorithms such as Dijkstra’s
algorithm. This algorithm repeatedly chooses the next node
that is at the least distance from the start node until a solu-
tion is found. Since the least-distance path is always the one
chosen for an extension, it is guaranteed to enumerate goal
nodes in order of increasing distance (i.e., decreasing proba-
bility). However, as our evaluation in Section 5 shows, uni-
form cost search performs poorly in practice by expanding
a huge number of paths before reaching the solution node.

We address this problem by employing A* search [14] in-
stead of uniform cost search. A* signi�cantly improves upon
uniform cost search by �rst expanding nodes that appear to
lead to the next closest goal node. It identi�es such nodes by

* f(“308-916”) = “308.916”
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Iter. Enumerated programs Counterex.

1 “.” “-.”

2 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                    {z                                    }
size 3

“308-916”

3 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, · · · ,x + “.”|                   {z                   }
size 3

, Rep(x , “.”, “-”), Rep(x , “-”, “.”)|                                  {z                                  }
size 4

Table 1. Enumeration using an unguided search.

Iter. Enumerated programs Counterex.

1 x + “.”|   {z   }
prob. 0.27

“-.”

2 x + “.”|{z}
prob. 0.27

, x + “-”| {z }
prob. 0.21

, · · · , Rep(x , “-”, “.”)|             {z             }
prob. 0.11

Table 2. Enumeration using our weighted search.

In the second iteration, the algorithm �rst enumerates
all expressions of size 1. Since none of them are correct on
pts, it proceeds to enumerate expressions of size 3 (there
are no expressions of size 2). Finally, the algorithm reaches
the expression “.” + “.” which is correct on pts. However, it
still fails to verify and yields counterexample input “308-916”
(because the desired output is “308.916” whereas the output
is “..”). As a result, pts becomes {“-.”, “308-916”}.
In the third iteration, the algorithm eventually �nds the

desired program Rep(x , “-”, “.”), which is correct on with re-
spect to the given speci�cation.
In general, the number of programs enumerated by the

above algorithm grows exponentially in program size, de-
spite a powerful optimization to avoid enumerating unneces-
sary programs that are equivalent under inputs in pts. Our
main hypothesis is that existing search-based synthesizers
su�er this limitation because they assume that all possible
programs are equally likely. For example, “.” + “.” explored in
the second iteration above is an unlikely program.
Our main idea is to guide the search towards likely pro-

grams. We propose a weighted enumerative algorithm to
achieve this objective. Table 2 depicts an execution of this
algorithm on our example. Our algorithm is essentially the
same as the existing enumerative algorithm except that it
enumerates programs in order of likelihood instead of size.
Therefore, instead of enumerating all the smallest expres-
sions (e.g., “.”, “-”, x ), it �rst proposes x + “.”, which is found
only in the third iteration by the existing enumerative search.
In the next iteration, it quickly �nds the solution because it
avoids enumerating many unlikely programs (e.g., “.” + “.”).

Figure 1. Graph of sentential forms derived from a PCFG.

2.1 A* Search for Weighted Enumeration
The �rst key contribution of our approach is an e�cient al-
gorithm based on A* search to enumerate programs in order
of decreasing probability. The algorithm is applicable to a
wide range of statistical program models, characterized in
Section 3. Figure 1(a) depicts one such model called PCFG
for the CFG of our synthesis problem, shown in (1). The
model takes a current non-empty sequence of terminal/non-
terminal symbols (i.e., a sentential form) and returns a prob-
ability for each production rule. For example, the probability
of the production rule S ! “.” is 0.72 when the current
sentential form is Rep(x , “-”, S).

Our algorithm conceptually works on a directed weighted
graph—constructed on demand—of sentential forms derived
from the given model. An example such graph for the PCFG
model above is shown in Figure 1(b). Each node of the graph
represents a sentential form that can be derived from the
start symbol S of the grammar. Each directed edge si ! sj
means that si expands to sj by applying a production rule to
the leftmost non-terminal symbol in si . Each edge is asso-
ciated with a real-valued weight which is the negative log
probability of its corresponding production rule provided by
the given model. The sum of the weights on a path from S
to a goal node is the negative log probability of the corre-
sponding program. Then, enumerating programs in order
of decreasing probability corresponds to enumerating goal
nodes by shortest (weighted) distance from the source node.

A straightforward way to perform this enumeration is to
employ uniform cost search algorithms such as Dijkstra’s
algorithm. This algorithm repeatedly chooses the next node
that is at the least distance from the start node until a solu-
tion is found. Since the least-distance path is always the one
chosen for an extension, it is guaranteed to enumerate goal
nodes in order of increasing distance (i.e., decreasing proba-
bility). However, as our evaluation in Section 5 shows, uni-
form cost search performs poorly in practice by expanding
a huge number of paths before reaching the solution node.

We address this problem by employing A* search [14] in-
stead of uniform cost search. A* signi�cantly improves upon
uniform cost search by �rst expanding nodes that appear to
lead to the next closest goal node. It identi�es such nodes by
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Many unlikely programs (e.g., “.” + “.”) are explored.
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context-free grammar [21], probabilistic higher-order gram-
mar [6], a log-bilinear model [1], a decision tree model [28],
and a neural network [5].
To address the second challenge, we target probabilistic

higher order grammars (PHOG) [6], a powerful probabilistic
model that generalizes probabilistic context-free grammars
by allowing conditioning of each production rule beyond the
parent non-terminal. It thereby allows capturing rich con-
texts to e�ectively distinguish likely programs from unlikely
ones. We learn the model from known solutions of synthesis
problems that were solved by existing techniques. A direct
application, however, su�ers from over�tting the model to
speci�cations in those synthesis problems. We propose a
novel learning method inspired by transfer learning [23, 24]
to learn the model from features of speci�cations. The fea-
tures are provided by a domain expert and are akin to domain
knowledge used to guide synthesis in existing techniques,
such as features of input-output examples [21] or abstract
semantics of programs [33].
We implemented our approach in a tool called E������

that we built atop EUS����� [4], an open-source state-of-the-
art search-based synthesizer. We evaluate E������ on 1,167
benchmark problems from three widely applicable domains:
string manipulation (end-user programming problems), bit-
vector manipulation (e�cient low-level algorithms), and cir-
cuit transformation (attack-resistant crypto circuits). For
each of these domains, we observe that it su�ces to train
E������ using easily obtainable solutions—those that can
be generated by EUS����� in under 10 minutes. These solu-
tions comprise 762 (⇠ 65%) of our benchmark problems.
The trained E������ is able to solve 236 new problems

in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [12], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.

Iter. Enumerated programs Counterex.

1 “.” “-.”

2 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                    {z                                    }
size 3

“308-916”

3 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, · · · ,x + “.”|                   {z                   }
size 3

, Rep(x , “.”, “-”), Rep(x , “-”, “.”)|                                  {z                                  }
size 4

Table 1. Enumeration using an unguided search.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

S =) S + S =) x + S =) x + “.”
where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).
We next illustrate how a typical search-based synthesizer

�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.
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context-free grammar [21], probabilistic higher-order gram-
mar [6], a log-bilinear model [1], a decision tree model [28],
and a neural network [5].
To address the second challenge, we target probabilistic

higher order grammars (PHOG) [6], a powerful probabilistic
model that generalizes probabilistic context-free grammars
by allowing conditioning of each production rule beyond the
parent non-terminal. It thereby allows capturing rich con-
texts to e�ectively distinguish likely programs from unlikely
ones. We learn the model from known solutions of synthesis
problems that were solved by existing techniques. A direct
application, however, su�ers from over�tting the model to
speci�cations in those synthesis problems. We propose a
novel learning method inspired by transfer learning [23, 24]
to learn the model from features of speci�cations. The fea-
tures are provided by a domain expert and are akin to domain
knowledge used to guide synthesis in existing techniques,
such as features of input-output examples [21] or abstract
semantics of programs [33].
We implemented our approach in a tool called E������

that we built atop EUS����� [4], an open-source state-of-the-
art search-based synthesizer. We evaluate E������ on 1,167
benchmark problems from three widely applicable domains:
string manipulation (end-user programming problems), bit-
vector manipulation (e�cient low-level algorithms), and cir-
cuit transformation (attack-resistant crypto circuits). For
each of these domains, we observe that it su�ces to train
E������ using easily obtainable solutions—those that can
be generated by EUS����� in under 10 minutes. These solu-
tions comprise 762 (⇠ 65%) of our benchmark problems.
The trained E������ is able to solve 236 new problems

in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [12], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.

Iter. Enumerated programs Counterex.

1 “.” “-.”

2 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                    {z                                    }
size 3

“308-916”

3 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, · · · ,x + “.”|                   {z                   }
size 3

, Rep(x , “.”, “-”), Rep(x , “-”, “.”)|                                  {z                                  }
size 4

Table 1. Enumeration using an unguided search.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

S =) S + S =) x + S =) x + “.”
where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).
We next illustrate how a typical search-based synthesizer

�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.
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context-free grammar [21], probabilistic higher-order gram-
mar [6], a log-bilinear model [1], a decision tree model [28],
and a neural network [5].
To address the second challenge, we target probabilistic

higher order grammars (PHOG) [6], a powerful probabilistic
model that generalizes probabilistic context-free grammars
by allowing conditioning of each production rule beyond the
parent non-terminal. It thereby allows capturing rich con-
texts to e�ectively distinguish likely programs from unlikely
ones. We learn the model from known solutions of synthesis
problems that were solved by existing techniques. A direct
application, however, su�ers from over�tting the model to
speci�cations in those synthesis problems. We propose a
novel learning method inspired by transfer learning [23, 24]
to learn the model from features of speci�cations. The fea-
tures are provided by a domain expert and are akin to domain
knowledge used to guide synthesis in existing techniques,
such as features of input-output examples [21] or abstract
semantics of programs [33].
We implemented our approach in a tool called E������

that we built atop EUS����� [4], an open-source state-of-the-
art search-based synthesizer. We evaluate E������ on 1,167
benchmark problems from three widely applicable domains:
string manipulation (end-user programming problems), bit-
vector manipulation (e�cient low-level algorithms), and cir-
cuit transformation (attack-resistant crypto circuits). For
each of these domains, we observe that it su�ces to train
E������ using easily obtainable solutions—those that can
be generated by EUS����� in under 10 minutes. These solu-
tions comprise 762 (⇠ 65%) of our benchmark problems.
The trained E������ is able to solve 236 new problems

in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [12], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.

Iter. Enumerated programs Counterex.

1 “.” “-.”

2 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                    {z                                    }
size 3

“308-916”

3 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, · · · ,x + “.”|                   {z                   }
size 3

, Rep(x , “.”, “-”), Rep(x , “-”, “.”)|                                  {z                                  }
size 4

Table 1. Enumeration using an unguided search.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

S =) S + S =) x + S =) x + “.”
where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).
We next illustrate how a typical search-based synthesizer

�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.
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context-free grammar [21], probabilistic higher-order gram-
mar [6], a log-bilinear model [1], a decision tree model [28],
and a neural network [5].
To address the second challenge, we target probabilistic

higher order grammars (PHOG) [6], a powerful probabilistic
model that generalizes probabilistic context-free grammars
by allowing conditioning of each production rule beyond the
parent non-terminal. It thereby allows capturing rich con-
texts to e�ectively distinguish likely programs from unlikely
ones. We learn the model from known solutions of synthesis
problems that were solved by existing techniques. A direct
application, however, su�ers from over�tting the model to
speci�cations in those synthesis problems. We propose a
novel learning method inspired by transfer learning [23, 24]
to learn the model from features of speci�cations. The fea-
tures are provided by a domain expert and are akin to domain
knowledge used to guide synthesis in existing techniques,
such as features of input-output examples [21] or abstract
semantics of programs [33].
We implemented our approach in a tool called E������

that we built atop EUS����� [4], an open-source state-of-the-
art search-based synthesizer. We evaluate E������ on 1,167
benchmark problems from three widely applicable domains:
string manipulation (end-user programming problems), bit-
vector manipulation (e�cient low-level algorithms), and cir-
cuit transformation (attack-resistant crypto circuits). For
each of these domains, we observe that it su�ces to train
E������ using easily obtainable solutions—those that can
be generated by EUS����� in under 10 minutes. These solu-
tions comprise 762 (⇠ 65%) of our benchmark problems.
The trained E������ is able to solve 236 new problems

in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [12], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.
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, “-” + “-”, · · · ,x + “.”|                   {z                   }
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, Rep(x , “.”, “-”), Rep(x , “-”, “.”)|                                  {z                                  }
size 4

Table 1. Enumeration using an unguided search.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

S =) S + S =) x + S =) x + “.”
where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).
We next illustrate how a typical search-based synthesizer

�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.
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Counterexample

;
<latexit sha1_base64="4McsGRci4oMtfo0yGlrzVnp4JtI=">AAAB8HicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9kPaUDbbSbt0Nwm7EyGE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqDi0ey1h3A2ZAighaKFBCN9HAVCChE0xuZ37nCbQRcfSAWQK+YqNIhIIztNJjH1SCmQEcVGtu3Z2DrhKvIDVSoDmofvWHMU8VRMglM6bnuQn6OdMouIRppZ8aSBifsBH0LI2YAuPn84On9MwqQxrG2laEdK7+nsiZMiZTge1UDMdm2ZuJ/3m9FMNrPxdRkiJEfLEoTCXFmM6+p0OhgaPMLGFcC3sr5WOmGUebUcWG4C2/vEraF3XPrXv3l7XGTRFHmZyQU3JOPHJFGuSONEmLcKLIM3klb452Xpx352PRWnKKmWPyB87nDzjdkKs=</latexit><latexit sha1_base64="4McsGRci4oMtfo0yGlrzVnp4JtI=">AAAB8HicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9kPaUDbbSbt0Nwm7EyGE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqDi0ey1h3A2ZAighaKFBCN9HAVCChE0xuZ37nCbQRcfSAWQK+YqNIhIIztNJjH1SCmQEcVGtu3Z2DrhKvIDVSoDmofvWHMU8VRMglM6bnuQn6OdMouIRppZ8aSBifsBH0LI2YAuPn84On9MwqQxrG2laEdK7+nsiZMiZTge1UDMdm2ZuJ/3m9FMNrPxdRkiJEfLEoTCXFmM6+p0OhgaPMLGFcC3sr5WOmGUebUcWG4C2/vEraF3XPrXv3l7XGTRFHmZyQU3JOPHJFGuSONEmLcKLIM3klb452Xpx352PRWnKKmWPyB87nDzjdkKs=</latexit><latexit sha1_base64="4McsGRci4oMtfo0yGlrzVnp4JtI=">AAAB8HicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9kPaUDbbSbt0Nwm7EyGE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqDi0ey1h3A2ZAighaKFBCN9HAVCChE0xuZ37nCbQRcfSAWQK+YqNIhIIztNJjH1SCmQEcVGtu3Z2DrhKvIDVSoDmofvWHMU8VRMglM6bnuQn6OdMouIRppZ8aSBifsBH0LI2YAuPn84On9MwqQxrG2laEdK7+nsiZMiZTge1UDMdm2ZuJ/3m9FMNrPxdRkiJEfLEoTCXFmM6+p0OhgaPMLGFcC3sr5WOmGUebUcWG4C2/vEraF3XPrXv3l7XGTRFHmZyQU3JOPHJFGuSONEmLcKLIM3klb452Xpx352PRWnKKmWPyB87nDzjdkKs=</latexit><latexit sha1_base64="4McsGRci4oMtfo0yGlrzVnp4JtI=">AAAB8HicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0GPRi8cK9kPaUDbbSbt0Nwm7EyGE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqDi0ey1h3A2ZAighaKFBCN9HAVCChE0xuZ37nCbQRcfSAWQK+YqNIhIIztNJjH1SCmQEcVGtu3Z2DrhKvIDVSoDmofvWHMU8VRMglM6bnuQn6OdMouIRppZ8aSBifsBH0LI2YAuPn84On9MwqQxrG2laEdK7+nsiZMiZTge1UDMdm2ZuJ/3m9FMNrPxdRkiJEfLEoTCXFmM6+p0OhgaPMLGFcC3sr5WOmGUebUcWG4C2/vEraF3XPrXv3l7XGTRFHmZyQU3JOPHJFGuSONEmLcKLIM3klb452Xpx352PRWnKKmWPyB87nDzjdkKs=</latexit>

Examples:

* f(“-.”) = “..”
<latexit sha1_base64="SeDbWtkfHJMlOtFMRVavhBXN40A=">AAACEnicbZDJSgNBEIZ7XGPcoh69NAZJcnCYEcFchIAXjxHMAklIejo12tiz0F0jhiHP4MVX8eJBEa+evPk2dhZBE39o+Pmqiur6vVgKjY7zZS0sLi2vrGbWsusbm1vbuZ3duo4SxaHGIxmppsc0SBFCDQVKaMYKWOBJaHi356N64w6UFlF4hYMYOgG7DoUvOEODurlS2wPOEg3UL7YR7jHt9Y7sQmFYomf0B9gj0M3lHdsZi84bd2ryZKpqN/fZ7kc8CSBELpnWLdeJsZMyhYJLGGbbZmvM+C27hpaxIQtAd9LxSUN6aEif+pEyL0Q6pr8nUhZoPQg80xkwvNGztRH8r9ZK0C93UhHGCULIJ4v8RFKM6Cgf2hcKOMqBMYwrYf5K+Q1TjKNJMWtCcGdPnjf1Y9t1bPfyJF8pT+PIkH1yQIrEJaekQi5IldQIJw/kibyQV+vRerberPdJ64I1ndkjf2R9fAMZbZvI</latexit><latexit sha1_base64="SeDbWtkfHJMlOtFMRVavhBXN40A=">AAACEnicbZDJSgNBEIZ7XGPcoh69NAZJcnCYEcFchIAXjxHMAklIejo12tiz0F0jhiHP4MVX8eJBEa+evPk2dhZBE39o+Pmqiur6vVgKjY7zZS0sLi2vrGbWsusbm1vbuZ3duo4SxaHGIxmppsc0SBFCDQVKaMYKWOBJaHi356N64w6UFlF4hYMYOgG7DoUvOEODurlS2wPOEg3UL7YR7jHt9Y7sQmFYomf0B9gj0M3lHdsZi84bd2ryZKpqN/fZ7kc8CSBELpnWLdeJsZMyhYJLGGbbZmvM+C27hpaxIQtAd9LxSUN6aEif+pEyL0Q6pr8nUhZoPQg80xkwvNGztRH8r9ZK0C93UhHGCULIJ4v8RFKM6Cgf2hcKOMqBMYwrYf5K+Q1TjKNJMWtCcGdPnjf1Y9t1bPfyJF8pT+PIkH1yQIrEJaekQi5IldQIJw/kibyQV+vRerberPdJ64I1ndkjf2R9fAMZbZvI</latexit><latexit sha1_base64="SeDbWtkfHJMlOtFMRVavhBXN40A=">AAACEnicbZDJSgNBEIZ7XGPcoh69NAZJcnCYEcFchIAXjxHMAklIejo12tiz0F0jhiHP4MVX8eJBEa+evPk2dhZBE39o+Pmqiur6vVgKjY7zZS0sLi2vrGbWsusbm1vbuZ3duo4SxaHGIxmppsc0SBFCDQVKaMYKWOBJaHi356N64w6UFlF4hYMYOgG7DoUvOEODurlS2wPOEg3UL7YR7jHt9Y7sQmFYomf0B9gj0M3lHdsZi84bd2ryZKpqN/fZ7kc8CSBELpnWLdeJsZMyhYJLGGbbZmvM+C27hpaxIQtAd9LxSUN6aEif+pEyL0Q6pr8nUhZoPQg80xkwvNGztRH8r9ZK0C93UhHGCULIJ4v8RFKM6Cgf2hcKOMqBMYwrYf5K+Q1TjKNJMWtCcGdPnjf1Y9t1bPfyJF8pT+PIkH1yQIrEJaekQi5IldQIJw/kibyQV+vRerberPdJ64I1ndkjf2R9fAMZbZvI</latexit><latexit sha1_base64="SeDbWtkfHJMlOtFMRVavhBXN40A=">AAACEnicbZDJSgNBEIZ7XGPcoh69NAZJcnCYEcFchIAXjxHMAklIejo12tiz0F0jhiHP4MVX8eJBEa+evPk2dhZBE39o+Pmqiur6vVgKjY7zZS0sLi2vrGbWsusbm1vbuZ3duo4SxaHGIxmppsc0SBFCDQVKaMYKWOBJaHi356N64w6UFlF4hYMYOgG7DoUvOEODurlS2wPOEg3UL7YR7jHt9Y7sQmFYomf0B9gj0M3lHdsZi84bd2ryZKpqN/fZ7kc8CSBELpnWLdeJsZMyhYJLGGbbZmvM+C27hpaxIQtAd9LxSUN6aEif+pEyL0Q6pr8nUhZoPQg80xkwvNGztRH8r9ZK0C93UhHGCULIJ4v8RFKM6Cgf2hcKOMqBMYwrYf5K+Q1TjKNJMWtCcGdPnjf1Y9t1bPfyJF8pT+PIkH1yQIrEJaekQi5IldQIJw/kibyQV+vRerberPdJ64I1ndkjf2R9fAMZbZvI</latexit>

“-.”
<latexit sha1_base64="1+u9xxQ8OzzgTvytwcLrEZZAjKw=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSAxe3OwaEzmSePGIiTwS2MDs0MCE2YczvUSy4Tu8eNAYr36MN//GAfagYCWdVKq6093lx1JodJxva219Y3NrO7eT393bPzgsHB3XdZQoDjUeyUg1faZBihBqKFBCM1bAAl9Cwx/dzvzGGJQWUfiAkxi8gA1C0RecoZG8NsITpt3upV0qTTuFomM7c9BV4makSDJUO4Wvdi/iSQAhcsm0brlOjF7KFAouYZpvJxpixkdsAC1DQxaA9tL50VN6bpQe7UfKVIh0rv6eSFmg9STwTWfAcKiXvZn4n9dKsF/2UhHGCULIF4v6iaQY0VkCtCcUcJQTQxhXwtxK+ZApxtHklDchuMsvr5L6le06tnt/XayUszhy5JSckQvikhtSIXekSmqEk0fyTF7JmzW2Xqx362PRumZlMyfkD6zPH9xRkXQ=</latexit><latexit sha1_base64="1+u9xxQ8OzzgTvytwcLrEZZAjKw=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSAxe3OwaEzmSePGIiTwS2MDs0MCE2YczvUSy4Tu8eNAYr36MN//GAfagYCWdVKq6093lx1JodJxva219Y3NrO7eT393bPzgsHB3XdZQoDjUeyUg1faZBihBqKFBCM1bAAl9Cwx/dzvzGGJQWUfiAkxi8gA1C0RecoZG8NsITpt3upV0qTTuFomM7c9BV4makSDJUO4Wvdi/iSQAhcsm0brlOjF7KFAouYZpvJxpixkdsAC1DQxaA9tL50VN6bpQe7UfKVIh0rv6eSFmg9STwTWfAcKiXvZn4n9dKsF/2UhHGCULIF4v6iaQY0VkCtCcUcJQTQxhXwtxK+ZApxtHklDchuMsvr5L6le06tnt/XayUszhy5JSckQvikhtSIXekSmqEk0fyTF7JmzW2Xqx362PRumZlMyfkD6zPH9xRkXQ=</latexit><latexit sha1_base64="1+u9xxQ8OzzgTvytwcLrEZZAjKw=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSAxe3OwaEzmSePGIiTwS2MDs0MCE2YczvUSy4Tu8eNAYr36MN//GAfagYCWdVKq6093lx1JodJxva219Y3NrO7eT393bPzgsHB3XdZQoDjUeyUg1faZBihBqKFBCM1bAAl9Cwx/dzvzGGJQWUfiAkxi8gA1C0RecoZG8NsITpt3upV0qTTuFomM7c9BV4makSDJUO4Wvdi/iSQAhcsm0brlOjF7KFAouYZpvJxpixkdsAC1DQxaA9tL50VN6bpQe7UfKVIh0rv6eSFmg9STwTWfAcKiXvZn4n9dKsF/2UhHGCULIF4v6iaQY0VkCtCcUcJQTQxhXwtxK+ZApxtHklDchuMsvr5L6le06tnt/XayUszhy5JSckQvikhtSIXekSmqEk0fyTF7JmzW2Xqx362PRumZlMyfkD6zPH9xRkXQ=</latexit><latexit sha1_base64="1+u9xxQ8OzzgTvytwcLrEZZAjKw=">AAAB9HicbVDLTgJBEJz1ifhCPXqZSAxe3OwaEzmSePGIiTwS2MDs0MCE2YczvUSy4Tu8eNAYr36MN//GAfagYCWdVKq6093lx1JodJxva219Y3NrO7eT393bPzgsHB3XdZQoDjUeyUg1faZBihBqKFBCM1bAAl9Cwx/dzvzGGJQWUfiAkxi8gA1C0RecoZG8NsITpt3upV0qTTuFomM7c9BV4makSDJUO4Wvdi/iSQAhcsm0brlOjF7KFAouYZpvJxpixkdsAC1DQxaA9tL50VN6bpQe7UfKVIh0rv6eSFmg9STwTWfAcKiXvZn4n9dKsF/2UhHGCULIF4v6iaQY0VkCtCcUcJQTQxhXwtxK+ZApxtHklDchuMsvr5L6le06tnt/XayUszhy5JSckQvikhtSIXekSmqEk0fyTF7JmzW2Xqx362PRumZlMyfkD6zPH9xRkXQ=</latexit>
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Iter. Enumerated programs Counterex.

1 x + “.”|   {z   }
prob. 0.27

“-.”

2 x + “.”|{z}
prob. 0.27

, x + “-”| {z }
prob. 0.21

, · · · , Rep(x , “-”, “.”)|             {z             }
prob. 0.11

Table 2. Enumeration using our weighted search.

Table 1 shows an execution of a state-of-the-art such algo-
rithm [32] on our example problem. It enumerates programs
generated by the given grammar in order of size. We step
through its execution of the CEGIS iterations.
In the �rst iteration, the candidate program proposed is

the �rst program that is generated, the expression “.”, because
pts is empty. Checking the correctness of this program with
respect to speci�cation 2 yields a counterexample input “-.”,
since the output of expression “.” on this input does not match
the desired output “..”. As a result, pts becomes {“-.”}.
In the second iteration, the algorithm �rst enumerates

all expressions of size 1. Since none of them are correct on
pts, it proceeds to enumerate expressions of size 3 (there
are no expressions of size 2). Finally, the algorithm reaches
the expression “.” + “.” which is correct on pts. However, it
still fails to verify and yields counterexample input “308-916”
(because the desired output is “308.916” whereas the output
is “..”). As a result, pts becomes {“-.”, “308-916”}.
In the third iteration, the algorithm eventually �nds the

desired program Rep(x , “-”, “.”), which is correct on with re-
spect to the given speci�cation.
In general, the number of programs enumerated by the

above algorithm grows exponentially in program size, de-
spite a powerful optimization to avoid enumerating unneces-
sary programs that are equivalent under inputs in pts. Our
main hypothesis is that existing search-based synthesizers
su�er this limitation because they assume that all possible
programs are equally likely. For example, “.” + “.” explored in
the second iteration above is an unlikely program.
Our main idea is to guide the search towards likely pro-

grams. We propose a weighted enumerative algorithm to
achieve this objective. Table 2 depicts an execution of this
algorithm on our example. Our algorithm is essentially the
same as the existing enumerative algorithm except that it
enumerates programs in order of likelihood instead of size.
Therefore, instead of enumerating all the smallest expres-
sions (e.g., “.”, “-”, x ), it �rst proposes x + “.”, which is found
only in the third iteration by the existing enumerative search.
In the next iteration, it quickly �nds the solution because it
avoids enumerating many unlikely programs (e.g., “.” + “.”).

2.1 A* Search for Weighted Enumeration
The �rst key contribution of our approach is an e�cient al-
gorithm based on A* search to enumerate programs in order
of decreasing probability. The algorithm is applicable to a

Figure 1. Graph of sentential forms derived from a PCFG.

wide range of statistical program models, characterized in
Section 3. Figure 1(a) depicts one such model called PCFG
for the CFG of our synthesis problem, shown in (1). The
model takes a current non-empty sequence of terminal/non-
terminal symbols (i.e., a sentential form) and returns a prob-
ability for each production rule. For example, the probability
of the production rule S ! “.” is 0.72 when the current
sentential form is Rep(x , “-”, S).

Our algorithm conceptually works on a directed weighted
graph—constructed on demand—of sentential forms derived
from the given model. An example such graph for the PCFG
model above is shown in Figure 1(b). Each node of the graph
represents a sentential form that can be derived from the
start symbol S of the grammar. Each directed edge si ! sj
means that si expands to sj by applying a production rule to
the leftmost non-terminal symbol in si . Each edge is asso-
ciated with a real-valued weight which is the negative log
probability of its corresponding production rule provided by
the given model. The sum of the weights on a path from S
to a goal node is the negative log probability of the corre-
sponding program. Then, enumerating programs in order
of decreasing probability corresponds to enumerating goal
nodes by shortest (weighted) distance from the source node.

A straightforward way to perform this enumeration is to
employ uniform cost search algorithms such as Dijkstra’s
algorithm. This algorithm repeatedly chooses the next node
that is at the least distance from the start node until a solu-
tion is found. Since the least-distance path is always the one
chosen for an extension, it is guaranteed to enumerate goal
nodes in order of increasing distance (i.e., decreasing proba-
bility). However, as our evaluation in Section 5 shows, uni-
form cost search performs poorly in practice by expanding
a huge number of paths before reaching the solution node.

We address this problem by employing A* search [14] in-
stead of uniform cost search. A* signi�cantly improves upon
uniform cost search by �rst expanding nodes that appear to
lead to the next closest goal node. It identi�es such nodes by
using not only their (known) distance from the start node but
also an estimate of their (unknown) distance to the closest
goal node. The more accurate this estimate, the smaller the
number of nodes expanded by A*, and is typically a small
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the �rst program that is generated, the expression “.”, because
pts is empty. Checking the correctness of this program with
respect to speci�cation 2 yields a counterexample input “-.”,
since the output of expression “.” on this input does not match
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wide range of statistical program models, characterized in
Section 3. Figure 1(a) depicts one such model called PCFG
for the CFG of our synthesis problem, shown in (1). The
model takes a current non-empty sequence of terminal/non-
terminal symbols (i.e., a sentential form) and returns a prob-
ability for each production rule. For example, the probability
of the production rule S ! “.” is 0.72 when the current
sentential form is Rep(x , “-”, S).

Our algorithm conceptually works on a directed weighted
graph—constructed on demand—of sentential forms derived
from the given model. An example such graph for the PCFG
model above is shown in Figure 1(b). Each node of the graph
represents a sentential form that can be derived from the
start symbol S of the grammar. Each directed edge si ! sj
means that si expands to sj by applying a production rule to
the leftmost non-terminal symbol in si . Each edge is asso-
ciated with a real-valued weight which is the negative log
probability of its corresponding production rule provided by
the given model. The sum of the weights on a path from S
to a goal node is the negative log probability of the corre-
sponding program. Then, enumerating programs in order
of decreasing probability corresponds to enumerating goal
nodes by shortest (weighted) distance from the source node.

A straightforward way to perform this enumeration is to
employ uniform cost search algorithms such as Dijkstra’s
algorithm. This algorithm repeatedly chooses the next node
that is at the least distance from the start node until a solu-
tion is found. Since the least-distance path is always the one
chosen for an extension, it is guaranteed to enumerate goal
nodes in order of increasing distance (i.e., decreasing proba-
bility). However, as our evaluation in Section 5 shows, uni-
form cost search performs poorly in practice by expanding
a huge number of paths before reaching the solution node.

We address this problem by employing A* search [14] in-
stead of uniform cost search. A* signi�cantly improves upon
uniform cost search by �rst expanding nodes that appear to
lead to the next closest goal node. It identi�es such nodes by
using not only their (known) distance from the start node but
also an estimate of their (unknown) distance to the closest
goal node. The more accurate this estimate, the smaller the
number of nodes expanded by A*, and is typically a small
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context-free grammar [21], probabilistic higher-order gram-
mar [6], a log-bilinear model [1], a decision tree model [28],
and a neural network [5].
To address the second challenge, we target probabilistic

higher order grammars (PHOG) [6], a powerful probabilistic
model that generalizes probabilistic context-free grammars
by allowing conditioning of each production rule beyond the
parent non-terminal. It thereby allows capturing rich con-
texts to e�ectively distinguish likely programs from unlikely
ones. We learn the model from known solutions of synthesis
problems that were solved by existing techniques. A direct
application, however, su�ers from over�tting the model to
speci�cations in those synthesis problems. We propose a
novel learning method inspired by transfer learning [23, 24]
to learn the model from features of speci�cations. The fea-
tures are provided by a domain expert and are akin to domain
knowledge used to guide synthesis in existing techniques,
such as features of input-output examples [21] or abstract
semantics of programs [33].
We implemented our approach in a tool called E������

that we built atop EUS����� [4], an open-source state-of-the-
art search-based synthesizer. We evaluate E������ on 1,167
benchmark problems from three widely applicable domains:
string manipulation (end-user programming problems), bit-
vector manipulation (e�cient low-level algorithms), and cir-
cuit transformation (attack-resistant crypto circuits). For
each of these domains, we observe that it su�ces to train
E������ using easily obtainable solutions—those that can
be generated by EUS����� in under 10 minutes. These solu-
tions comprise 762 (⇠ 65%) of our benchmark problems.
The trained E������ is able to solve 236 new problems

in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [12], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.

Iter. Enumerated programs Counterex.

1 “.” “-.”

2 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                    {z                                    }
size 3

“308-916”

3 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, · · · ,x + “.”|                   {z                   }
size 3

, Rep(x , “.”, “-”), Rep(x , “-”, “.”)|                                  {z                                  }
size 4

Table 1. Enumeration using an unguided search.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

S =) S + S =) x + S =) x + “.”
where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).
We next illustrate how a typical search-based synthesizer

�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.
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context-free grammar [21], probabilistic higher-order gram-
mar [6], a log-bilinear model [1], a decision tree model [28],
and a neural network [5].
To address the second challenge, we target probabilistic

higher order grammars (PHOG) [6], a powerful probabilistic
model that generalizes probabilistic context-free grammars
by allowing conditioning of each production rule beyond the
parent non-terminal. It thereby allows capturing rich con-
texts to e�ectively distinguish likely programs from unlikely
ones. We learn the model from known solutions of synthesis
problems that were solved by existing techniques. A direct
application, however, su�ers from over�tting the model to
speci�cations in those synthesis problems. We propose a
novel learning method inspired by transfer learning [23, 24]
to learn the model from features of speci�cations. The fea-
tures are provided by a domain expert and are akin to domain
knowledge used to guide synthesis in existing techniques,
such as features of input-output examples [21] or abstract
semantics of programs [33].
We implemented our approach in a tool called E������

that we built atop EUS����� [4], an open-source state-of-the-
art search-based synthesizer. We evaluate E������ on 1,167
benchmark problems from three widely applicable domains:
string manipulation (end-user programming problems), bit-
vector manipulation (e�cient low-level algorithms), and cir-
cuit transformation (attack-resistant crypto circuits). For
each of these domains, we observe that it su�ces to train
E������ using easily obtainable solutions—those that can
be generated by EUS����� in under 10 minutes. These solu-
tions comprise 762 (⇠ 65%) of our benchmark problems.
The trained E������ is able to solve 236 new problems

in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [12], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.

Iter. Enumerated programs Counterex.

1 “.” “-.”

2 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                    {z                                    }
size 3

“308-916”

3 “.”, “-”, x|     {z     }
size 1

, “-” + “-”, · · · ,x + “.”|                   {z                   }
size 3

, Rep(x , “.”, “-”), Rep(x , “-”, “.”)|                                  {z                                  }
size 4

Table 1. Enumeration using an unguided search.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

S =) S + S =) x + S =) x + “.”
where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).
We next illustrate how a typical search-based synthesizer

�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.
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Iter. Enumerated programs Counterex.

1 x + “.”|   {z   }
prob. 0.27

“-.”

2 x + “.”|{z}
prob. 0.27

, x + “-”| {z }
prob. 0.21

, · · · , Rep(x , “-”, “.”)|             {z             }
prob. 0.11

Table 2. Enumeration using our weighted search.

Table 1 shows an execution of a state-of-the-art such algo-
rithm [32] on our example problem. It enumerates programs
generated by the given grammar in order of size. We step
through its execution of the CEGIS iterations.
In the �rst iteration, the candidate program proposed is

the �rst program that is generated, the expression “.”, because
pts is empty. Checking the correctness of this program with
respect to speci�cation 2 yields a counterexample input “-.”,
since the output of expression “.” on this input does not match
the desired output “..”. As a result, pts becomes {“-.”}.
In the second iteration, the algorithm �rst enumerates

all expressions of size 1. Since none of them are correct on
pts, it proceeds to enumerate expressions of size 3 (there
are no expressions of size 2). Finally, the algorithm reaches
the expression “.” + “.” which is correct on pts. However, it
still fails to verify and yields counterexample input “308-916”
(because the desired output is “308.916” whereas the output
is “..”). As a result, pts becomes {“-.”, “308-916”}.
In the third iteration, the algorithm eventually �nds the

desired program Rep(x , “-”, “.”), which is correct on with re-
spect to the given speci�cation.
In general, the number of programs enumerated by the

above algorithm grows exponentially in program size, de-
spite a powerful optimization to avoid enumerating unneces-
sary programs that are equivalent under inputs in pts. Our
main hypothesis is that existing search-based synthesizers
su�er this limitation because they assume that all possible
programs are equally likely. For example, “.” + “.” explored in
the second iteration above is an unlikely program.
Our main idea is to guide the search towards likely pro-

grams. We propose a weighted enumerative algorithm to
achieve this objective. Table 2 depicts an execution of this
algorithm on our example. Our algorithm is essentially the
same as the existing enumerative algorithm except that it
enumerates programs in order of likelihood instead of size.
Therefore, instead of enumerating all the smallest expres-
sions (e.g., “.”, “-”, x ), it �rst proposes x + “.”, which is found
only in the third iteration by the existing enumerative search.
In the next iteration, it quickly �nds the solution because it
avoids enumerating many unlikely programs (e.g., “.” + “.”).

2.1 A* Search for Weighted Enumeration
The �rst key contribution of our approach is an e�cient al-
gorithm based on A* search to enumerate programs in order
of decreasing probability. The algorithm is applicable to a

Figure 1. Graph of sentential forms derived from a PCFG.

wide range of statistical program models, characterized in
Section 3. Figure 1(a) depicts one such model called PCFG
for the CFG of our synthesis problem, shown in (1). The
model takes a current non-empty sequence of terminal/non-
terminal symbols (i.e., a sentential form) and returns a prob-
ability for each production rule. For example, the probability
of the production rule S ! “.” is 0.72 when the current
sentential form is Rep(x , “-”, S).

Our algorithm conceptually works on a directed weighted
graph—constructed on demand—of sentential forms derived
from the given model. An example such graph for the PCFG
model above is shown in Figure 1(b). Each node of the graph
represents a sentential form that can be derived from the
start symbol S of the grammar. Each directed edge si ! sj
means that si expands to sj by applying a production rule to
the leftmost non-terminal symbol in si . Each edge is asso-
ciated with a real-valued weight which is the negative log
probability of its corresponding production rule provided by
the given model. The sum of the weights on a path from S
to a goal node is the negative log probability of the corre-
sponding program. Then, enumerating programs in order
of decreasing probability corresponds to enumerating goal
nodes by shortest (weighted) distance from the source node.

A straightforward way to perform this enumeration is to
employ uniform cost search algorithms such as Dijkstra’s
algorithm. This algorithm repeatedly chooses the next node
that is at the least distance from the start node until a solu-
tion is found. Since the least-distance path is always the one
chosen for an extension, it is guaranteed to enumerate goal
nodes in order of increasing distance (i.e., decreasing proba-
bility). However, as our evaluation in Section 5 shows, uni-
form cost search performs poorly in practice by expanding
a huge number of paths before reaching the solution node.

We address this problem by employing A* search [14] in-
stead of uniform cost search. A* signi�cantly improves upon
uniform cost search by �rst expanding nodes that appear to
lead to the next closest goal node. It identi�es such nodes by
using not only their (known) distance from the start node but
also an estimate of their (unknown) distance to the closest
goal node. The more accurate this estimate, the smaller the
number of nodes expanded by A*, and is typically a small

• Avoids many unlikely candidates 

• Preserves the pruning optimization 

Enumerative Search: Guided



A Uniform Interface to Statistical Program Models

• Given a sequence of terminal/nonterminal symbols (i.e., sentential 
form), provide a probability for each production rule
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Pr(S ! “.” | Rep(x, “-”, S)) = 0.72
Pr(S ! “-” | Rep(x, “-”, S)) = 0.001

· · ·



A Uniform Interface to Statistical Program Models

• Given a sequence of terminal/nonterminal symbols (i.e., sentential 
form), provide a probability for each production rule

• Determines a probability of a given program   (e.g.,                     )
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context-free grammar [21], probabilistic higher-order gram-
mar [6], a log-bilinear model [1], a decision tree model [28],
and a neural network [5].
To address the second challenge, we target probabilistic

higher order grammars (PHOG) [6], a powerful probabilistic
model that generalizes probabilistic context-free grammars
by allowing conditioning of each production rule beyond the
parent non-terminal. It thereby allows capturing rich con-
texts to e�ectively distinguish likely programs from unlikely
ones. We learn the model from known solutions of synthesis
problems that were solved by existing techniques. A direct
application, however, su�ers from over�tting the model to
speci�cations in those synthesis problems. We propose a
novel learning method inspired by transfer learning [23, 24]
to learn the model from features of speci�cations. The fea-
tures are provided by a domain expert and are akin to domain
knowledge used to guide synthesis in existing techniques,
such as features of input-output examples [21] or abstract
semantics of programs [33].
We implemented our approach in a tool called E������

that we built atop EUS����� [4], an open-source state-of-the-
art search-based synthesizer. We evaluate E������ on 1,167
benchmark problems from three widely applicable domains:
string manipulation (end-user programming problems), bit-
vector manipulation (e�cient low-level algorithms), and cir-
cuit transformation (attack-resistant crypto circuits). For
each of these domains, we observe that it su�ces to train
E������ using easily obtainable solutions—those that can
be generated by EUS����� in under 10 minutes. These solu-
tions comprise 762 (⇠ 65%) of our benchmark problems.
The trained E������ is able to solve 236 new problems

in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [12], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.

Iter. Enumerated programs Counterex.

1 “.” “-.”
2 “.”, “-”,x|   {z   }

size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                  {z                                  }
size 3

“308-916”

3 “.”, “-”,x|   {z   }
size 1

, “-” + “-”, · · · ,x + “.”|                   {z                   }
size 3

, Rep(x , “.”, “-”), Rep(x , “-”, “.”)|                                 {z                                 }
size 4

Table 1. Enumeration using an unguided search.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

S =) S + S =) x + S =) x + “.”
where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).
We next illustrate how a typical search-based synthesizer

�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.
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<latexit sha1_base64="GXIeDQ9Bc5Hciv652O+i89mLZUE=">AAACAHicbVDNS8MwHE3n16xfVQ8evASHMBFGK4I7Drx4nMx9wFZGmqZbWJKWJBVG2cV/xYsHRbz6Z3jzvzHdetDNByGP934/kveChFGlXffbKq2tb2xulbftnd29/QPn8Kij4lRi0sYxi2UvQIowKkhbU81IL5EE8YCRbjC5zf3uI5GKxuJBTxPiczQSNKIYaSMNnRO7KastONAxbF2am9MQtuCFPXQqbs2dA64SryAVUKA5dL4GYYxTToTGDCnV99xE+xmSmmJGZvYgVSRBeIJGpG+oQJwoP5sHmMFzo4QwiqU5QsO5+nsjQ1ypKQ/MJEd6rJa9XPzP66c6qvsZFUmqicCLh6KUQRM3bwOGVBKs2dQQhCU1f4V4jCTC2nSWl+AtR14lnaua59a8++tKo17UUQan4AxUgQduQAPcgSZoAwxm4Bm8gjfryXqx3q2PxWjJKnaOwR9Ynz9Ou5Oa</latexit><latexit sha1_base64="GXIeDQ9Bc5Hciv652O+i89mLZUE=">AAACAHicbVDNS8MwHE3n16xfVQ8evASHMBFGK4I7Drx4nMx9wFZGmqZbWJKWJBVG2cV/xYsHRbz6Z3jzvzHdetDNByGP934/kveChFGlXffbKq2tb2xulbftnd29/QPn8Kij4lRi0sYxi2UvQIowKkhbU81IL5EE8YCRbjC5zf3uI5GKxuJBTxPiczQSNKIYaSMNnRO7KastONAxbF2am9MQtuCFPXQqbs2dA64SryAVUKA5dL4GYYxTToTGDCnV99xE+xmSmmJGZvYgVSRBeIJGpG+oQJwoP5sHmMFzo4QwiqU5QsO5+nsjQ1ypKQ/MJEd6rJa9XPzP66c6qvsZFUmqicCLh6KUQRM3bwOGVBKs2dQQhCU1f4V4jCTC2nSWl+AtR14lnaua59a8++tKo17UUQan4AxUgQduQAPcgSZoAwxm4Bm8gjfryXqx3q2PxWjJKnaOwR9Ynz9Ou5Oa</latexit><latexit sha1_base64="GXIeDQ9Bc5Hciv652O+i89mLZUE=">AAACAHicbVDNS8MwHE3n16xfVQ8evASHMBFGK4I7Drx4nMx9wFZGmqZbWJKWJBVG2cV/xYsHRbz6Z3jzvzHdetDNByGP934/kveChFGlXffbKq2tb2xulbftnd29/QPn8Kij4lRi0sYxi2UvQIowKkhbU81IL5EE8YCRbjC5zf3uI5GKxuJBTxPiczQSNKIYaSMNnRO7KastONAxbF2am9MQtuCFPXQqbs2dA64SryAVUKA5dL4GYYxTToTGDCnV99xE+xmSmmJGZvYgVSRBeIJGpG+oQJwoP5sHmMFzo4QwiqU5QsO5+nsjQ1ypKQ/MJEd6rJa9XPzP66c6qvsZFUmqicCLh6KUQRM3bwOGVBKs2dQQhCU1f4V4jCTC2nSWl+AtR14lnaua59a8++tKo17UUQan4AxUgQduQAPcgSZoAwxm4Bm8gjfryXqx3q2PxWjJKnaOwR9Ynz9Ou5Oa</latexit><latexit sha1_base64="GXIeDQ9Bc5Hciv652O+i89mLZUE=">AAACAHicbVDNS8MwHE3n16xfVQ8evASHMBFGK4I7Drx4nMx9wFZGmqZbWJKWJBVG2cV/xYsHRbz6Z3jzvzHdetDNByGP934/kveChFGlXffbKq2tb2xulbftnd29/QPn8Kij4lRi0sYxi2UvQIowKkhbU81IL5EE8YCRbjC5zf3uI5GKxuJBTxPiczQSNKIYaSMNnRO7KastONAxbF2am9MQtuCFPXQqbs2dA64SryAVUKA5dL4GYYxTToTGDCnV99xE+xmSmmJGZvYgVSRBeIJGpG+oQJwoP5sHmMFzo4QwiqU5QsO5+nsjQ1ypKQ/MJEd6rJa9XPzP66c6qvsZFUmqicCLh6KUQRM3bwOGVBKs2dQQhCU1f4V4jCTC2nSWl+AtR14lnaua59a8++tKo17UUQan4AxUgQduQAPcgSZoAwxm4Bm8gjfryXqx3q2PxWjJKnaOwR9Ynz9Ou5Oa</latexit>

Pr(S ! x | S + S)
<latexit sha1_base64="50YAD/0NALj3XYa/2KaOukKzzGk=">AAACAXicbVDLSsNAFJ3UV42vqBvBzWARKkJJRLDLghuXldoHNKFMJpN26EwSZiZiCXXjr7hxoYhb/8Kdf+OkzUJbDwwczrmXO+f4CaNS2fa3UVpZXVvfKG+aW9s7u3vW/kFHxqnApI1jFouejyRhNCJtRRUjvUQQxH1Guv74Ove790RIGkd3apIQj6NhREOKkdLSwDoym6Lagq6K4QN0OQ1gC57D1pk5sCp2zZ4BLhOnIBVQoDmwvtwgxiknkcIMSdl37ER5GRKKYkampptKkiA8RkPS1zRCnEgvmyWYwlOtBDCMhX6RgjP190aGuJQT7utJjtRILnq5+J/XT1VY9zIaJakiEZ4fClMGdd68DhhQQbBiE00QFlT/FeIREggrXVpegrMYeZl0LmqOXXNuLyuNelFHGRyDE1AFDrgCDXADmqANMHgEz+AVvBlPxovxbnzMR0tGsXMI/sD4/AHk7pPp</latexit><latexit sha1_base64="50YAD/0NALj3XYa/2KaOukKzzGk=">AAACAXicbVDLSsNAFJ3UV42vqBvBzWARKkJJRLDLghuXldoHNKFMJpN26EwSZiZiCXXjr7hxoYhb/8Kdf+OkzUJbDwwczrmXO+f4CaNS2fa3UVpZXVvfKG+aW9s7u3vW/kFHxqnApI1jFouejyRhNCJtRRUjvUQQxH1Guv74Ove790RIGkd3apIQj6NhREOKkdLSwDoym6Lagq6K4QN0OQ1gC57D1pk5sCp2zZ4BLhOnIBVQoDmwvtwgxiknkcIMSdl37ER5GRKKYkampptKkiA8RkPS1zRCnEgvmyWYwlOtBDCMhX6RgjP190aGuJQT7utJjtRILnq5+J/XT1VY9zIaJakiEZ4fClMGdd68DhhQQbBiE00QFlT/FeIREggrXVpegrMYeZl0LmqOXXNuLyuNelFHGRyDE1AFDrgCDXADmqANMHgEz+AVvBlPxovxbnzMR0tGsXMI/sD4/AHk7pPp</latexit><latexit sha1_base64="50YAD/0NALj3XYa/2KaOukKzzGk=">AAACAXicbVDLSsNAFJ3UV42vqBvBzWARKkJJRLDLghuXldoHNKFMJpN26EwSZiZiCXXjr7hxoYhb/8Kdf+OkzUJbDwwczrmXO+f4CaNS2fa3UVpZXVvfKG+aW9s7u3vW/kFHxqnApI1jFouejyRhNCJtRRUjvUQQxH1Guv74Ove790RIGkd3apIQj6NhREOKkdLSwDoym6Lagq6K4QN0OQ1gC57D1pk5sCp2zZ4BLhOnIBVQoDmwvtwgxiknkcIMSdl37ER5GRKKYkampptKkiA8RkPS1zRCnEgvmyWYwlOtBDCMhX6RgjP190aGuJQT7utJjtRILnq5+J/XT1VY9zIaJakiEZ4fClMGdd68DhhQQbBiE00QFlT/FeIREggrXVpegrMYeZl0LmqOXXNuLyuNelFHGRyDE1AFDrgCDXADmqANMHgEz+AVvBlPxovxbnzMR0tGsXMI/sD4/AHk7pPp</latexit><latexit sha1_base64="50YAD/0NALj3XYa/2KaOukKzzGk=">AAACAXicbVDLSsNAFJ3UV42vqBvBzWARKkJJRLDLghuXldoHNKFMJpN26EwSZiZiCXXjr7hxoYhb/8Kdf+OkzUJbDwwczrmXO+f4CaNS2fa3UVpZXVvfKG+aW9s7u3vW/kFHxqnApI1jFouejyRhNCJtRRUjvUQQxH1Guv74Ove790RIGkd3apIQj6NhREOKkdLSwDoym6Lagq6K4QN0OQ1gC57D1pk5sCp2zZ4BLhOnIBVQoDmwvtwgxiknkcIMSdl37ER5GRKKYkampptKkiA8RkPS1zRCnEgvmyWYwlOtBDCMhX6RgjP190aGuJQT7utJjtRILnq5+J/XT1VY9zIaJakiEZ4fClMGdd68DhhQQbBiE00QFlT/FeIREggrXVpegrMYeZl0LmqOXXNuLyuNelFHGRyDE1AFDrgCDXADmqANMHgEz+AVvBlPxovxbnzMR0tGsXMI/sD4/AHk7pPp</latexit>

Pr(S ! “.” | x+ S)
<latexit sha1_base64="ME2c1NCp6rnay7wt30P8KobwkTc=">AAACDHicbVDLSsNAFJ3UV42vqks3g0VaEUIigl0W3Lis1D6gCe1kMmmHTh7MTKQl9APc+CtuXCji1g9w5984abPQ1gMXDufcy8w5bsyokKb5rRXW1jc2t4rb+s7u3v5B6fCoLaKEY9LCEYt410WCMBqSlqSSkW7MCQpcRjru+CbzOw+ECxqF93IaEydAw5D6FCOppH6prDd4tQltGakhE5kOBkalMoN2QD04gRewea6rLdMw54CrxMpJGeRo9EtfthfhJCChxAwJ0bPMWDop4pJiRma6nQgSIzxGQ9JTNEQBEU46DzODZ0rxoB9xNaGEc/X3RYoCIaaBqzYDJEdi2cvE/7xeIv2ak9IwTiQJ8eIhP2FQRc+agR7lBEs2VQRhTtVfIR4hjrBU/WUlWMuRV0n70rBMw7q7KtdreR1FcAJOQRVY4BrUwS1ogBbA4BE8g1fwpj1pL9q79rFYLWj5zTH4A+3zB/3GmFk=</latexit><latexit sha1_base64="ME2c1NCp6rnay7wt30P8KobwkTc=">AAACDHicbVDLSsNAFJ3UV42vqks3g0VaEUIigl0W3Lis1D6gCe1kMmmHTh7MTKQl9APc+CtuXCji1g9w5984abPQ1gMXDufcy8w5bsyokKb5rRXW1jc2t4rb+s7u3v5B6fCoLaKEY9LCEYt410WCMBqSlqSSkW7MCQpcRjru+CbzOw+ECxqF93IaEydAw5D6FCOppH6prDd4tQltGakhE5kOBkalMoN2QD04gRewea6rLdMw54CrxMpJGeRo9EtfthfhJCChxAwJ0bPMWDop4pJiRma6nQgSIzxGQ9JTNEQBEU46DzODZ0rxoB9xNaGEc/X3RYoCIaaBqzYDJEdi2cvE/7xeIv2ak9IwTiQJ8eIhP2FQRc+agR7lBEs2VQRhTtVfIR4hjrBU/WUlWMuRV0n70rBMw7q7KtdreR1FcAJOQRVY4BrUwS1ogBbA4BE8g1fwpj1pL9q79rFYLWj5zTH4A+3zB/3GmFk=</latexit><latexit sha1_base64="ME2c1NCp6rnay7wt30P8KobwkTc=">AAACDHicbVDLSsNAFJ3UV42vqks3g0VaEUIigl0W3Lis1D6gCe1kMmmHTh7MTKQl9APc+CtuXCji1g9w5984abPQ1gMXDufcy8w5bsyokKb5rRXW1jc2t4rb+s7u3v5B6fCoLaKEY9LCEYt410WCMBqSlqSSkW7MCQpcRjru+CbzOw+ECxqF93IaEydAw5D6FCOppH6prDd4tQltGakhE5kOBkalMoN2QD04gRewea6rLdMw54CrxMpJGeRo9EtfthfhJCChxAwJ0bPMWDop4pJiRma6nQgSIzxGQ9JTNEQBEU46DzODZ0rxoB9xNaGEc/X3RYoCIaaBqzYDJEdi2cvE/7xeIv2ak9IwTiQJ8eIhP2FQRc+agR7lBEs2VQRhTtVfIR4hjrBU/WUlWMuRV0n70rBMw7q7KtdreR1FcAJOQRVY4BrUwS1ogBbA4BE8g1fwpj1pL9q79rFYLWj5zTH4A+3zB/3GmFk=</latexit><latexit sha1_base64="ME2c1NCp6rnay7wt30P8KobwkTc=">AAACDHicbVDLSsNAFJ3UV42vqks3g0VaEUIigl0W3Lis1D6gCe1kMmmHTh7MTKQl9APc+CtuXCji1g9w5984abPQ1gMXDufcy8w5bsyokKb5rRXW1jc2t4rb+s7u3v5B6fCoLaKEY9LCEYt410WCMBqSlqSSkW7MCQpcRjru+CbzOw+ECxqF93IaEydAw5D6FCOppH6prDd4tQltGakhE5kOBkalMoN2QD04gRewea6rLdMw54CrxMpJGeRo9EtfthfhJCChxAwJ0bPMWDop4pJiRma6nQgSIzxGQ9JTNEQBEU46DzODZ0rxoB9xNaGEc/X3RYoCIaaBqzYDJEdi2cvE/7xeIv2ak9IwTiQJ8eIhP2FQRc+agR7lBEs2VQRhTtVfIR4hjrBU/WUlWMuRV0n70rBMw7q7KtdreR1FcAJOQRVY4BrUwS1ogBbA4BE8g1fwpj1pL9q79rFYLWj5zTH4A+3zB/3GmFk=</latexit>

⇥
<latexit sha1_base64="6zSF+mvfr7UKBXFZVrHPnIBvmU4=">AAAB73icbVBNS8NAEJ3Urxq/qh69LBbBU0lEsMeCF48V7Ae0oWy2m3bpZhN3J0Ip/RNePCji1b/jzX/jps1BWx8MPN6bYWZemEph0PO+ndLG5tb2TnnX3ds/ODyqHJ+0TZJpxlsskYnuhtRwKRRvoUDJu6nmNA4l74ST29zvPHFtRKIecJryIKYjJSLBKFqp6/ZRxNy4g0rVq3kLkHXiF6QKBZqDyld/mLAs5gqZpMb0fC/FYEY1Cib53O1nhqeUTeiI9yxV1G4JZot75+TCKkMSJdqWQrJQf0/MaGzMNA5tZ0xxbFa9XPzP62UY1YOZUGmGXLHloiiTBBOSP0+GQnOGcmoJZVrYWwkbU00Z2ojyEPzVl9dJ+6rmezX//rraqBdxlOEMzuESfLiBBtxBE1rAQMIzvMKb8+i8OO/Ox7K15BQzp/AHzucPHiqPUg==</latexit><latexit sha1_base64="6zSF+mvfr7UKBXFZVrHPnIBvmU4=">AAAB73icbVBNS8NAEJ3Urxq/qh69LBbBU0lEsMeCF48V7Ae0oWy2m3bpZhN3J0Ip/RNePCji1b/jzX/jps1BWx8MPN6bYWZemEph0PO+ndLG5tb2TnnX3ds/ODyqHJ+0TZJpxlsskYnuhtRwKRRvoUDJu6nmNA4l74ST29zvPHFtRKIecJryIKYjJSLBKFqp6/ZRxNy4g0rVq3kLkHXiF6QKBZqDyld/mLAs5gqZpMb0fC/FYEY1Cib53O1nhqeUTeiI9yxV1G4JZot75+TCKkMSJdqWQrJQf0/MaGzMNA5tZ0xxbFa9XPzP62UY1YOZUGmGXLHloiiTBBOSP0+GQnOGcmoJZVrYWwkbU00Z2ojyEPzVl9dJ+6rmezX//rraqBdxlOEMzuESfLiBBtxBE1rAQMIzvMKb8+i8OO/Ox7K15BQzp/AHzucPHiqPUg==</latexit><latexit sha1_base64="6zSF+mvfr7UKBXFZVrHPnIBvmU4=">AAAB73icbVBNS8NAEJ3Urxq/qh69LBbBU0lEsMeCF48V7Ae0oWy2m3bpZhN3J0Ip/RNePCji1b/jzX/jps1BWx8MPN6bYWZemEph0PO+ndLG5tb2TnnX3ds/ODyqHJ+0TZJpxlsskYnuhtRwKRRvoUDJu6nmNA4l74ST29zvPHFtRKIecJryIKYjJSLBKFqp6/ZRxNy4g0rVq3kLkHXiF6QKBZqDyld/mLAs5gqZpMb0fC/FYEY1Cib53O1nhqeUTeiI9yxV1G4JZot75+TCKkMSJdqWQrJQf0/MaGzMNA5tZ0xxbFa9XPzP62UY1YOZUGmGXLHloiiTBBOSP0+GQnOGcmoJZVrYWwkbU00Z2ojyEPzVl9dJ+6rmezX//rraqBdxlOEMzuESfLiBBtxBE1rAQMIzvMKb8+i8OO/Ox7K15BQzp/AHzucPHiqPUg==</latexit><latexit sha1_base64="6zSF+mvfr7UKBXFZVrHPnIBvmU4=">AAAB73icbVBNS8NAEJ3Urxq/qh69LBbBU0lEsMeCF48V7Ae0oWy2m3bpZhN3J0Ip/RNePCji1b/jzX/jps1BWx8MPN6bYWZemEph0PO+ndLG5tb2TnnX3ds/ODyqHJ+0TZJpxlsskYnuhtRwKRRvoUDJu6nmNA4l74ST29zvPHFtRKIecJryIKYjJSLBKFqp6/ZRxNy4g0rVq3kLkHXiF6QKBZqDyld/mLAs5gqZpMb0fC/FYEY1Cib53O1nhqeUTeiI9yxV1G4JZot75+TCKkMSJdqWQrJQf0/MaGzMNA5tZ0xxbFa9XPzP62UY1YOZUGmGXLHloiiTBBOSP0+GQnOGcmoJZVrYWwkbU00Z2ojyEPzVl9dJ+6rmezX//rraqBdxlOEMzuESfLiBBtxBE1rAQMIzvMKb8+i8OO/Ox7K15BQzp/AHzucPHiqPUg==</latexit>

x+ “.”
<latexit sha1_base64="n8nBqWNk8p3YASYZvUA+0zGop+s=">AAAB+3icbVDLSsNAFJ34rPEV69LNYJEKQkhEsMuCG5cV7APa0E6mk3bo5MHMjbSE/oobF4q49Ufc+TdO2iy09cCFwzn3cu89fiK4Asf5NjY2t7Z3dkt75v7B4dGxdVJuqTiVlDVpLGLZ8YligkesCRwE6ySSkdAXrO1P7nK//cSk4nH0CLOEeSEZRTzglICW+lbZnOIr3AM2hWwwsKvVudm3Ko7tLIDXiVuQCirQ6FtfvWFM05BFQAVRqus6CXgZkcCpYHOzlyqWEDohI9bVNCIhU162uH2OL7QyxEEsdUWAF+rviYyESs1CX3eGBMZq1cvF/7xuCkHNy3iUpMAiulwUpAJDjPMg8JBLRkHMNCFUcn0rpmMiCQUdVx6Cu/ryOmld265juw83lXqtiKOEztA5ukQuukV1dI8aqIkomqJn9IrejLnxYrwbH8vWDaOYOUV/YHz+AE4BkqE=</latexit><latexit sha1_base64="n8nBqWNk8p3YASYZvUA+0zGop+s=">AAAB+3icbVDLSsNAFJ34rPEV69LNYJEKQkhEsMuCG5cV7APa0E6mk3bo5MHMjbSE/oobF4q49Ufc+TdO2iy09cCFwzn3cu89fiK4Asf5NjY2t7Z3dkt75v7B4dGxdVJuqTiVlDVpLGLZ8YligkesCRwE6ySSkdAXrO1P7nK//cSk4nH0CLOEeSEZRTzglICW+lbZnOIr3AM2hWwwsKvVudm3Ko7tLIDXiVuQCirQ6FtfvWFM05BFQAVRqus6CXgZkcCpYHOzlyqWEDohI9bVNCIhU162uH2OL7QyxEEsdUWAF+rviYyESs1CX3eGBMZq1cvF/7xuCkHNy3iUpMAiulwUpAJDjPMg8JBLRkHMNCFUcn0rpmMiCQUdVx6Cu/ryOmld265juw83lXqtiKOEztA5ukQuukV1dI8aqIkomqJn9IrejLnxYrwbH8vWDaOYOUV/YHz+AE4BkqE=</latexit><latexit sha1_base64="n8nBqWNk8p3YASYZvUA+0zGop+s=">AAAB+3icbVDLSsNAFJ34rPEV69LNYJEKQkhEsMuCG5cV7APa0E6mk3bo5MHMjbSE/oobF4q49Ufc+TdO2iy09cCFwzn3cu89fiK4Asf5NjY2t7Z3dkt75v7B4dGxdVJuqTiVlDVpLGLZ8YligkesCRwE6ySSkdAXrO1P7nK//cSk4nH0CLOEeSEZRTzglICW+lbZnOIr3AM2hWwwsKvVudm3Ko7tLIDXiVuQCirQ6FtfvWFM05BFQAVRqus6CXgZkcCpYHOzlyqWEDohI9bVNCIhU162uH2OL7QyxEEsdUWAF+rviYyESs1CX3eGBMZq1cvF/7xuCkHNy3iUpMAiulwUpAJDjPMg8JBLRkHMNCFUcn0rpmMiCQUdVx6Cu/ryOmld265juw83lXqtiKOEztA5ukQuukV1dI8aqIkomqJn9IrejLnxYrwbH8vWDaOYOUV/YHz+AE4BkqE=</latexit><latexit sha1_base64="n8nBqWNk8p3YASYZvUA+0zGop+s=">AAAB+3icbVDLSsNAFJ34rPEV69LNYJEKQkhEsMuCG5cV7APa0E6mk3bo5MHMjbSE/oobF4q49Ufc+TdO2iy09cCFwzn3cu89fiK4Asf5NjY2t7Z3dkt75v7B4dGxdVJuqTiVlDVpLGLZ8YligkesCRwE6ySSkdAXrO1P7nK//cSk4nH0CLOEeSEZRTzglICW+lbZnOIr3AM2hWwwsKvVudm3Ko7tLIDXiVuQCirQ6FtfvWFM05BFQAVRqus6CXgZkcCpYHOzlyqWEDohI9bVNCIhU162uH2OL7QyxEEsdUWAF+rviYyESs1CX3eGBMZq1cvF/7xuCkHNy3iUpMAiulwUpAJDjPMg8JBLRkHMNCFUcn0rpmMiCQUdVx6Cu/ryOmld265juw83lXqtiKOEztA5ukQuukV1dI8aqIkomqJn9IrejLnxYrwbH8vWDaOYOUV/YHz+AE4BkqE=</latexit>

⇥
<latexit sha1_base64="6zSF+mvfr7UKBXFZVrHPnIBvmU4=">AAAB73icbVBNS8NAEJ3Urxq/qh69LBbBU0lEsMeCF48V7Ae0oWy2m3bpZhN3J0Ip/RNePCji1b/jzX/jps1BWx8MPN6bYWZemEph0PO+ndLG5tb2TnnX3ds/ODyqHJ+0TZJpxlsskYnuhtRwKRRvoUDJu6nmNA4l74ST29zvPHFtRKIecJryIKYjJSLBKFqp6/ZRxNy4g0rVq3kLkHXiF6QKBZqDyld/mLAs5gqZpMb0fC/FYEY1Cib53O1nhqeUTeiI9yxV1G4JZot75+TCKkMSJdqWQrJQf0/MaGzMNA5tZ0xxbFa9XPzP62UY1YOZUGmGXLHloiiTBBOSP0+GQnOGcmoJZVrYWwkbU00Z2ojyEPzVl9dJ+6rmezX//rraqBdxlOEMzuESfLiBBtxBE1rAQMIzvMKb8+i8OO/Ox7K15BQzp/AHzucPHiqPUg==</latexit><latexit sha1_base64="6zSF+mvfr7UKBXFZVrHPnIBvmU4=">AAAB73icbVBNS8NAEJ3Urxq/qh69LBbBU0lEsMeCF48V7Ae0oWy2m3bpZhN3J0Ip/RNePCji1b/jzX/jps1BWx8MPN6bYWZemEph0PO+ndLG5tb2TnnX3ds/ODyqHJ+0TZJpxlsskYnuhtRwKRRvoUDJu6nmNA4l74ST29zvPHFtRKIecJryIKYjJSLBKFqp6/ZRxNy4g0rVq3kLkHXiF6QKBZqDyld/mLAs5gqZpMb0fC/FYEY1Cib53O1nhqeUTeiI9yxV1G4JZot75+TCKkMSJdqWQrJQf0/MaGzMNA5tZ0xxbFa9XPzP62UY1YOZUGmGXLHloiiTBBOSP0+GQnOGcmoJZVrYWwkbU00Z2ojyEPzVl9dJ+6rmezX//rraqBdxlOEMzuESfLiBBtxBE1rAQMIzvMKb8+i8OO/Ox7K15BQzp/AHzucPHiqPUg==</latexit><latexit sha1_base64="6zSF+mvfr7UKBXFZVrHPnIBvmU4=">AAAB73icbVBNS8NAEJ3Urxq/qh69LBbBU0lEsMeCF48V7Ae0oWy2m3bpZhN3J0Ip/RNePCji1b/jzX/jps1BWx8MPN6bYWZemEph0PO+ndLG5tb2TnnX3ds/ODyqHJ+0TZJpxlsskYnuhtRwKRRvoUDJu6nmNA4l74ST29zvPHFtRKIecJryIKYjJSLBKFqp6/ZRxNy4g0rVq3kLkHXiF6QKBZqDyld/mLAs5gqZpMb0fC/FYEY1Cib53O1nhqeUTeiI9yxV1G4JZot75+TCKkMSJdqWQrJQf0/MaGzMNA5tZ0xxbFa9XPzP62UY1YOZUGmGXLHloiiTBBOSP0+GQnOGcmoJZVrYWwkbU00Z2ojyEPzVl9dJ+6rmezX//rraqBdxlOEMzuESfLiBBtxBE1rAQMIzvMKb8+i8OO/Ox7K15BQzp/AHzucPHiqPUg==</latexit><latexit sha1_base64="6zSF+mvfr7UKBXFZVrHPnIBvmU4=">AAAB73icbVBNS8NAEJ3Urxq/qh69LBbBU0lEsMeCF48V7Ae0oWy2m3bpZhN3J0Ip/RNePCji1b/jzX/jps1BWx8MPN6bYWZemEph0PO+ndLG5tb2TnnX3ds/ODyqHJ+0TZJpxlsskYnuhtRwKRRvoUDJu6nmNA4l74ST29zvPHFtRKIecJryIKYjJSLBKFqp6/ZRxNy4g0rVq3kLkHXiF6QKBZqDyld/mLAs5gqZpMb0fC/FYEY1Cib53O1nhqeUTeiI9yxV1G4JZot75+TCKkMSJdqWQrJQf0/MaGzMNA5tZ0xxbFa9XPzP62UY1YOZUGmGXLHloiiTBBOSP0+GQnOGcmoJZVrYWwkbU00Z2ojyEPzVl9dJ+6rmezX//rraqBdxlOEMzuESfLiBBtxBE1rAQMIzvMKb8+i8OO/Ox7K15BQzp/AHzucPHiqPUg==</latexit>



Examples of Models

• Probabilistic context-free grammar (PCFG)
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P
S ! “.” 0.2
S ! “-” 0.2
S ! x 0.1
S ! S + S 0.1
S ! Rep(S, S, S) 0.4

A ! �
<latexit sha1_base64="+oqwDFGIXD6K9Yu/sEiKtnxlewo=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLqxmUF+4AklMl00g6dTMLMjVBKP8ONC0Xc+jXu/BunbRbaemDgcM69zD0nyqQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZprxlsslanuRtRwKRRvoUDJu5nmNIkk70Sju5nfeeLaiFQ94jjjYUIHSsSCUbSSf0MCTEkQcaS9as2tu3OQVeIVpAYFmr3qV9BPWZ5whUxSY3zPzTCcUI2CST6tBLnhGWUjOuC+pYom3IST+clTcmaVPolTbZ9CMld/b0xoYsw4iexkQnFolr2Z+J/n5xhfhxOhshy5YouP4lwSG3OWn/SF5gzl2BLKtLC3EjakmjK0LVVsCd5y5FXSvqh7bt17uKw1bos6ynACp3AOHlxBA+6hCS1gkMIzvMKbg86L8+58LEZLTrFzDH/gfP4AVaiQoA==</latexit><latexit sha1_base64="+oqwDFGIXD6K9Yu/sEiKtnxlewo=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLqxmUF+4AklMl00g6dTMLMjVBKP8ONC0Xc+jXu/BunbRbaemDgcM69zD0nyqQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZprxlsslanuRtRwKRRvoUDJu5nmNIkk70Sju5nfeeLaiFQ94jjjYUIHSsSCUbSSf0MCTEkQcaS9as2tu3OQVeIVpAYFmr3qV9BPWZ5whUxSY3zPzTCcUI2CST6tBLnhGWUjOuC+pYom3IST+clTcmaVPolTbZ9CMld/b0xoYsw4iexkQnFolr2Z+J/n5xhfhxOhshy5YouP4lwSG3OWn/SF5gzl2BLKtLC3EjakmjK0LVVsCd5y5FXSvqh7bt17uKw1bos6ynACp3AOHlxBA+6hCS1gkMIzvMKbg86L8+58LEZLTrFzDH/gfP4AVaiQoA==</latexit><latexit sha1_base64="+oqwDFGIXD6K9Yu/sEiKtnxlewo=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLqxmUF+4AklMl00g6dTMLMjVBKP8ONC0Xc+jXu/BunbRbaemDgcM69zD0nyqQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZprxlsslanuRtRwKRRvoUDJu5nmNIkk70Sju5nfeeLaiFQ94jjjYUIHSsSCUbSSf0MCTEkQcaS9as2tu3OQVeIVpAYFmr3qV9BPWZ5whUxSY3zPzTCcUI2CST6tBLnhGWUjOuC+pYom3IST+clTcmaVPolTbZ9CMld/b0xoYsw4iexkQnFolr2Z+J/n5xhfhxOhshy5YouP4lwSG3OWn/SF5gzl2BLKtLC3EjakmjK0LVVsCd5y5FXSvqh7bt17uKw1bos6ynACp3AOHlxBA+6hCS1gkMIzvMKbg86L8+58LEZLTrFzDH/gfP4AVaiQoA==</latexit><latexit sha1_base64="+oqwDFGIXD6K9Yu/sEiKtnxlewo=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLqxmUF+4AklMl00g6dTMLMjVBKP8ONC0Xc+jXu/BunbRbaemDgcM69zD0nyqQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZprxlsslanuRtRwKRRvoUDJu5nmNIkk70Sju5nfeeLaiFQ94jjjYUIHSsSCUbSSf0MCTEkQcaS9as2tu3OQVeIVpAYFmr3qV9BPWZ5whUxSY3zPzTCcUI2CST6tBLnhGWUjOuC+pYom3IST+clTcmaVPolTbZ9CMld/b0xoYsw4iexkQnFolr2Z+J/n5xhfhxOhshy5YouP4lwSG3OWn/SF5gzl2BLKtLC3EjakmjK0LVVsCd5y5FXSvqh7bt17uKw1bos6ynACp3AOHlxBA+6hCS1gkMIzvMKbg86L8+58LEZLTrFzDH/gfP4AVaiQoA==</latexit>



Examples of Models
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• Probabilistic Higher-order Grammar (PHOG)  (the model we use)

A[context] ! �
P

S[“-”, Rep] ! “.” 0.72
S[“-”, Rep] ! “-” 0.001
S[“-”, Rep] ! x 0.12
S[“-”, Rep] ! S + S 0.02
S[“-”, Rep] ! Rep(S, S, S) 0.139

. . .

x

Rep

"-" S

Pr(S ! “.” | Rep(“x”, “-”, S))
= 0.72

<latexit sha1_base64="qENU7BQHGV1lGGrYyMTclye0mvM="></latexit><latexit sha1_base64="qENU7BQHGV1lGGrYyMTclye0mvM="></latexit><latexit sha1_base64="qENU7BQHGV1lGGrYyMTclye0mvM=">AAACVXicbVFNT+MwEHWyfG2Wj7IcuViUFUWCKEFIcEFCcOHYBQpIdVUcZ9pa2E5kO4gqyp/kgvgnXFZatwSJr5FGevPezNh+TnLBjY2iZ8//MTM7N7/wM/i1uLS80lj9fWWyQjPosExk+iahBgRX0LHcCrjJNVCZCLhO7k4n+vU9aMMzdWnHOfQkHSo+4IxaR/UbgiQw5KqkWtNxVYoqaOvWBSY2cwkPtry9Dbe2KkwkT3FJtMTnkFetN23zYdOpO2/l7qS42MbbmBB8hKPwYC8goNJ6fb/RjMJoGvgriGvQRHW0+41HkmaskKAsE9SYbhzltue2Wc4EVAEpDOSU3dEhdB1UVILplVNXKvzHMSkeZNqlsnjKvp8oqTRmLBPXKakdmc/ahPxO6xZ2cNgrucoLC4q9HjQoBHaeTSzGKdfArBg7QJnm7q6YjaimzLqPCJwJ8ecnfwVXe2EchfHf/ebxSW3HAlpHG6iFYnSAjtEZaqMOYugRvXie53tP3j9/xp97bfW9emYNfQh/5T8qlrB/</latexit><latexit sha1_base64="qENU7BQHGV1lGGrYyMTclye0mvM="></latexit>

PHOG when                is  symbols at 

left sibling and parent

context

• Others: n-gram, a neural network-based model, log-bilinear model … 



• Nodes:  sentential forms 

• s1 → s2:  s1 expands to s2 by  
applying a production rule r

• w(s1 → s2) = - log ( Pr (r | s1) )

Guided Enumeration via Path Finding

Given a model,  we construct a directed graph.
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r

r

S
x

Rep(S,S,S)
S+S

Rep(x,"-",".")

. . .

Rep(x,”-“,S)

. . . . . .

Rep(x,"-","-")

� log2(0.001)
= 10

<latexit sha1_base64="cjocci67DBy6XcNOZgnIxfUI7q4=">AAACHXicbVDLSgMxFM34rOOr6tJNsAh1YZkpBd0IRTcuK9gHdErJpLdtaCYzJBlhGPojbvwVNy4UceFG/Bsz7Sy09UDgcM65Se7xI86Udpxva2V1bX1js7Blb+/s7u0XDw5bKowlhSYNeSg7PlHAmYCmZppDJ5JAAp9D25/cZH77AaRiobjXSQS9gIwEGzJKtJH6xZrnw4iJlEhJkmkqp/Y59ng46ldx2ak4jnuGPQ9fuY7tgRjksX6xlHkZ8DJxc1JCORr94qc3CGkcgNCUE6W6rhPpnrlNM8phanuxgojQCRlB11BBAlC9dLbdFJ8aZYCHoTRHaDxTf0+kJFAqCXyTDIgeq0UvE//zurEeXvZSJqJYg6Dzh4YxxzrEWVV4wCRQzRNDCJXM/BXTMZGEalOobUpwF1deJq1qxXUq7l2tVL/O6yigY3SCyshFF6iOblEDNRFFj+gZvaI368l6sd6tj3l0xcpnjtAfWF8/tGOfxQ==</latexit><latexit sha1_base64="cjocci67DBy6XcNOZgnIxfUI7q4=">AAACHXicbVDLSgMxFM34rOOr6tJNsAh1YZkpBd0IRTcuK9gHdErJpLdtaCYzJBlhGPojbvwVNy4UceFG/Bsz7Sy09UDgcM65Se7xI86Udpxva2V1bX1js7Blb+/s7u0XDw5bKowlhSYNeSg7PlHAmYCmZppDJ5JAAp9D25/cZH77AaRiobjXSQS9gIwEGzJKtJH6xZrnw4iJlEhJkmkqp/Y59ng46ldx2ak4jnuGPQ9fuY7tgRjksX6xlHkZ8DJxc1JCORr94qc3CGkcgNCUE6W6rhPpnrlNM8phanuxgojQCRlB11BBAlC9dLbdFJ8aZYCHoTRHaDxTf0+kJFAqCXyTDIgeq0UvE//zurEeXvZSJqJYg6Dzh4YxxzrEWVV4wCRQzRNDCJXM/BXTMZGEalOobUpwF1deJq1qxXUq7l2tVL/O6yigY3SCyshFF6iOblEDNRFFj+gZvaI368l6sd6tj3l0xcpnjtAfWF8/tGOfxQ==</latexit><latexit sha1_base64="cjocci67DBy6XcNOZgnIxfUI7q4=">AAACHXicbVDLSgMxFM34rOOr6tJNsAh1YZkpBd0IRTcuK9gHdErJpLdtaCYzJBlhGPojbvwVNy4UceFG/Bsz7Sy09UDgcM65Se7xI86Udpxva2V1bX1js7Blb+/s7u0XDw5bKowlhSYNeSg7PlHAmYCmZppDJ5JAAp9D25/cZH77AaRiobjXSQS9gIwEGzJKtJH6xZrnw4iJlEhJkmkqp/Y59ng46ldx2ak4jnuGPQ9fuY7tgRjksX6xlHkZ8DJxc1JCORr94qc3CGkcgNCUE6W6rhPpnrlNM8phanuxgojQCRlB11BBAlC9dLbdFJ8aZYCHoTRHaDxTf0+kJFAqCXyTDIgeq0UvE//zurEeXvZSJqJYg6Dzh4YxxzrEWVV4wCRQzRNDCJXM/BXTMZGEalOobUpwF1deJq1qxXUq7l2tVL/O6yigY3SCyshFF6iOblEDNRFFj+gZvaI368l6sd6tj3l0xcpnjtAfWF8/tGOfxQ==</latexit><latexit sha1_base64="cjocci67DBy6XcNOZgnIxfUI7q4=">AAACHXicbVDLSgMxFM34rOOr6tJNsAh1YZkpBd0IRTcuK9gHdErJpLdtaCYzJBlhGPojbvwVNy4UceFG/Bsz7Sy09UDgcM65Se7xI86Udpxva2V1bX1js7Blb+/s7u0XDw5bKowlhSYNeSg7PlHAmYCmZppDJ5JAAp9D25/cZH77AaRiobjXSQS9gIwEGzJKtJH6xZrnw4iJlEhJkmkqp/Y59ng46ldx2ak4jnuGPQ9fuY7tgRjksX6xlHkZ8DJxc1JCORr94qc3CGkcgNCUE6W6rhPpnrlNM8phanuxgojQCRlB11BBAlC9dLbdFJ8aZYCHoTRHaDxTf0+kJFAqCXyTDIgeq0UvE//zurEeXvZSJqJYg6Dzh4YxxzrEWVV4wCRQzRNDCJXM/BXTMZGEalOobUpwF1deJq1qxXUq7l2tVL/O6yigY3SCyshFF6iOblEDNRFFj+gZvaI368l6sd6tj3l0xcpnjtAfWF8/tGOfxQ==</latexit>

� log2(0.72)
= 0.47

<latexit sha1_base64="F1kIjL9V1oULbjIYrQBPxvLN4R0=">AAACH3icbVDLSgMxFM34rOOr6tJNsAh14TBTinUjFN24rGAf0Cklk962oZnMkGSEMvRP3PgrblwoIu76N6btLLT1QOBwzrlJ7glizpR23am1tr6xubWd27F39/YPDvNHxw0VJZJCnUY8kq2AKOBMQF0zzaEVSyBhwKEZjO5mfvMJpGKReNTjGDohGQjWZ5RoI3XzV34AAyZSIiUZT1I5sS+xz6NBt4SLrlMpXWDft2+w65Qrtg+ilwW7+YLruHPgVeJlpIAy1Lr5b78X0SQEoSknSrU9N9Ydc5tmlMPE9hMFMaEjMoC2oYKEoDrpfL8JPjdKD/cjaY7QeK7+nkhJqNQ4DEwyJHqolr2Z+J/XTnT/upMyEScaBF081E841hGelYV7TALVfGwIoZKZv2I6JJJQbSq1TQne8sqrpFFyPNfxHsqF6m1WRw6dojNURB6qoCq6RzVURxQ9o1f0jj6sF+vN+rS+FtE1K5s5QX9gTX8Ai6mgIw==</latexit><latexit sha1_base64="F1kIjL9V1oULbjIYrQBPxvLN4R0=">AAACH3icbVDLSgMxFM34rOOr6tJNsAh14TBTinUjFN24rGAf0Cklk962oZnMkGSEMvRP3PgrblwoIu76N6btLLT1QOBwzrlJ7glizpR23am1tr6xubWd27F39/YPDvNHxw0VJZJCnUY8kq2AKOBMQF0zzaEVSyBhwKEZjO5mfvMJpGKReNTjGDohGQjWZ5RoI3XzV34AAyZSIiUZT1I5sS+xz6NBt4SLrlMpXWDft2+w65Qrtg+ilwW7+YLruHPgVeJlpIAy1Lr5b78X0SQEoSknSrU9N9Ydc5tmlMPE9hMFMaEjMoC2oYKEoDrpfL8JPjdKD/cjaY7QeK7+nkhJqNQ4DEwyJHqolr2Z+J/XTnT/upMyEScaBF081E841hGelYV7TALVfGwIoZKZv2I6JJJQbSq1TQne8sqrpFFyPNfxHsqF6m1WRw6dojNURB6qoCq6RzVURxQ9o1f0jj6sF+vN+rS+FtE1K5s5QX9gTX8Ai6mgIw==</latexit><latexit sha1_base64="F1kIjL9V1oULbjIYrQBPxvLN4R0=">AAACH3icbVDLSgMxFM34rOOr6tJNsAh14TBTinUjFN24rGAf0Cklk962oZnMkGSEMvRP3PgrblwoIu76N6btLLT1QOBwzrlJ7glizpR23am1tr6xubWd27F39/YPDvNHxw0VJZJCnUY8kq2AKOBMQF0zzaEVSyBhwKEZjO5mfvMJpGKReNTjGDohGQjWZ5RoI3XzV34AAyZSIiUZT1I5sS+xz6NBt4SLrlMpXWDft2+w65Qrtg+ilwW7+YLruHPgVeJlpIAy1Lr5b78X0SQEoSknSrU9N9Ydc5tmlMPE9hMFMaEjMoC2oYKEoDrpfL8JPjdKD/cjaY7QeK7+nkhJqNQ4DEwyJHqolr2Z+J/XTnT/upMyEScaBF081E841hGelYV7TALVfGwIoZKZv2I6JJJQbSq1TQne8sqrpFFyPNfxHsqF6m1WRw6dojNURB6qoCq6RzVURxQ9o1f0jj6sF+vN+rS+FtE1K5s5QX9gTX8Ai6mgIw==</latexit><latexit sha1_base64="F1kIjL9V1oULbjIYrQBPxvLN4R0=">AAACH3icbVDLSgMxFM34rOOr6tJNsAh14TBTinUjFN24rGAf0Cklk962oZnMkGSEMvRP3PgrblwoIu76N6btLLT1QOBwzrlJ7glizpR23am1tr6xubWd27F39/YPDvNHxw0VJZJCnUY8kq2AKOBMQF0zzaEVSyBhwKEZjO5mfvMJpGKReNTjGDohGQjWZ5RoI3XzV34AAyZSIiUZT1I5sS+xz6NBt4SLrlMpXWDft2+w65Qrtg+ilwW7+YLruHPgVeJlpIAy1Lr5b78X0SQEoSknSrU9N9Ydc5tmlMPE9hMFMaEjMoC2oYKEoDrpfL8JPjdKD/cjaY7QeK7+nkhJqNQ4DEwyJHqolr2Z+J/XTnT/upMyEScaBF081E841hGelYV7TALVfGwIoZKZv2I6JJJQbSq1TQne8sqrpFFyPNfxHsqF6m1WRw6dojNURB6qoCq6RzVURxQ9o1f0jj6sF+vN+rS+FtE1K5s5QX9gTX8Ai6mgIw==</latexit>



• Start node:  S

• Goal nodes:  all programs 

• A heuristic function designed to 
work with any model

Idea:  solving a shortest pathfinding problem via A* search
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S
x

Rep(S,S,S)
S+S

Rep(x,"-",".")

. . .

Rep(x,”-“,S)

. . . . . .

Rep(x,"-","-")

� log2(0.001)
= 10

<latexit sha1_base64="cjocci67DBy6XcNOZgnIxfUI7q4=">AAACHXicbVDLSgMxFM34rOOr6tJNsAh1YZkpBd0IRTcuK9gHdErJpLdtaCYzJBlhGPojbvwVNy4UceFG/Bsz7Sy09UDgcM65Se7xI86Udpxva2V1bX1js7Blb+/s7u0XDw5bKowlhSYNeSg7PlHAmYCmZppDJ5JAAp9D25/cZH77AaRiobjXSQS9gIwEGzJKtJH6xZrnw4iJlEhJkmkqp/Y59ng46ldx2ak4jnuGPQ9fuY7tgRjksX6xlHkZ8DJxc1JCORr94qc3CGkcgNCUE6W6rhPpnrlNM8phanuxgojQCRlB11BBAlC9dLbdFJ8aZYCHoTRHaDxTf0+kJFAqCXyTDIgeq0UvE//zurEeXvZSJqJYg6Dzh4YxxzrEWVV4wCRQzRNDCJXM/BXTMZGEalOobUpwF1deJq1qxXUq7l2tVL/O6yigY3SCyshFF6iOblEDNRFFj+gZvaI368l6sd6tj3l0xcpnjtAfWF8/tGOfxQ==</latexit><latexit sha1_base64="cjocci67DBy6XcNOZgnIxfUI7q4=">AAACHXicbVDLSgMxFM34rOOr6tJNsAh1YZkpBd0IRTcuK9gHdErJpLdtaCYzJBlhGPojbvwVNy4UceFG/Bsz7Sy09UDgcM65Se7xI86Udpxva2V1bX1js7Blb+/s7u0XDw5bKowlhSYNeSg7PlHAmYCmZppDJ5JAAp9D25/cZH77AaRiobjXSQS9gIwEGzJKtJH6xZrnw4iJlEhJkmkqp/Y59ng46ldx2ak4jnuGPQ9fuY7tgRjksX6xlHkZ8DJxc1JCORr94qc3CGkcgNCUE6W6rhPpnrlNM8phanuxgojQCRlB11BBAlC9dLbdFJ8aZYCHoTRHaDxTf0+kJFAqCXyTDIgeq0UvE//zurEeXvZSJqJYg6Dzh4YxxzrEWVV4wCRQzRNDCJXM/BXTMZGEalOobUpwF1deJq1qxXUq7l2tVL/O6yigY3SCyshFF6iOblEDNRFFj+gZvaI368l6sd6tj3l0xcpnjtAfWF8/tGOfxQ==</latexit><latexit sha1_base64="cjocci67DBy6XcNOZgnIxfUI7q4=">AAACHXicbVDLSgMxFM34rOOr6tJNsAh1YZkpBd0IRTcuK9gHdErJpLdtaCYzJBlhGPojbvwVNy4UceFG/Bsz7Sy09UDgcM65Se7xI86Udpxva2V1bX1js7Blb+/s7u0XDw5bKowlhSYNeSg7PlHAmYCmZppDJ5JAAp9D25/cZH77AaRiobjXSQS9gIwEGzJKtJH6xZrnw4iJlEhJkmkqp/Y59ng46ldx2ak4jnuGPQ9fuY7tgRjksX6xlHkZ8DJxc1JCORr94qc3CGkcgNCUE6W6rhPpnrlNM8phanuxgojQCRlB11BBAlC9dLbdFJ8aZYCHoTRHaDxTf0+kJFAqCXyTDIgeq0UvE//zurEeXvZSJqJYg6Dzh4YxxzrEWVV4wCRQzRNDCJXM/BXTMZGEalOobUpwF1deJq1qxXUq7l2tVL/O6yigY3SCyshFF6iOblEDNRFFj+gZvaI368l6sd6tj3l0xcpnjtAfWF8/tGOfxQ==</latexit><latexit sha1_base64="cjocci67DBy6XcNOZgnIxfUI7q4=">AAACHXicbVDLSgMxFM34rOOr6tJNsAh1YZkpBd0IRTcuK9gHdErJpLdtaCYzJBlhGPojbvwVNy4UceFG/Bsz7Sy09UDgcM65Se7xI86Udpxva2V1bX1js7Blb+/s7u0XDw5bKowlhSYNeSg7PlHAmYCmZppDJ5JAAp9D25/cZH77AaRiobjXSQS9gIwEGzJKtJH6xZrnw4iJlEhJkmkqp/Y59ng46ldx2ak4jnuGPQ9fuY7tgRjksX6xlHkZ8DJxc1JCORr94qc3CGkcgNCUE6W6rhPpnrlNM8phanuxgojQCRlB11BBAlC9dLbdFJ8aZYCHoTRHaDxTf0+kJFAqCXyTDIgeq0UvE//zurEeXvZSJqJYg6Dzh4YxxzrEWVV4wCRQzRNDCJXM/BXTMZGEalOobUpwF1deJq1qxXUq7l2tVL/O6yigY3SCyshFF6iOblEDNRFFj+gZvaI368l6sd6tj3l0xcpnjtAfWF8/tGOfxQ==</latexit>

� log2(0.72)
= 0.47
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• Suppose we are given a similar synthesis problem with the 
following semantic specification:

• Desired solution:                           
 (the inverse of the previous solution                   
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The trained E������ is able to solve 236 new problems
in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [10], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.

Iter. Enumerated programs Counterex.

1 “.” “-.”
2 “.”, “-”,x|   {z   }

size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                  {z                                  }
size 3

“308-916”

3 “.”, “-”,x , · · · ,x + “.”, Rep(x , “.”, “-”), Rep(x , “-”, “.”)

Table 1. Enumeration using an unguided search.

Iter. Enumerated programs Counterex.

1 x + “.” “-.”
2 x + “.”,x + “-”, · · · , Rep(x , “-”, “.”)

Table 2. Enumeration using our weighted search.

We next illustrate how a typical search-based synthesizer
�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

Table 1 shows an execution of a state-of-the-art such algo-
rithm [27] on our example problem. It enumerates programs
generated by the given grammar in order of size. We step
through its execution of the CEGIS iterations.
In the �rst iteration, the candidate program proposed is

the �rst program that is generated, the expression “.”, because
pts is empty. Checking the correctness of this program with
respect to speci�cation 2 yields a counterexample input “-.”,
since the output of expression “.” on this input does not match
the desired output “..”. As a result, pts becomes {“-.”}.
In the second iteration, the algorithm �rst enumerates

all expressions of size 1. Since none of them are correct on
pts, it proceeds to enumerate expressions of size 3 (there
are no expressions of size 2). Finally, the algorithm reaches
the expression “.” + “.” which is correct on pts. However, it
still fails to verify and yields counterexample input “308-916”
(because the desired output is “308.916” whereas the output
is “..”). As a result, pts becomes {“-.”, “308-916”}.
In the third iteration, the algorithm eventually �nds the

desired program Rep(x , “-”, “.”), which is correct on with re-
spect to the given speci�cation.
In general, the number of programs enumerated by the

above algorithm grows exponentially in program size, de-
spite a powerful optimization to avoid enumerating unneces-
sary programs that are equivalent under inputs in pts. Our
main hypothesis is that existing search-based synthesizers
su�er this limitation because they assume that all possible
programs are equally likely. For example, “.” + “.” explored in
the second iteration above is an unlikely program.
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Figure 3. PHOG learned using our transfer learning method.

� log2(0.72) = 0.47. Under that same context, the probability
of the production rule S ! “-” is 0.01. Therefore, the edge
from (1) to (2) has weight � log2(0.001) = 9.97. Note that
now we avoid enumerating node (2) because the solution
node (3) is explored �rst as it is closer to the start node.

However, blindly using PHOGs for guiding synthesis hin-
ders their performance, because of the problem of over�tting.
Consider another synthesis problem of �nding a function f
following a semantic speci�cation comprising input-output
examples as follows:

f (“12.31”) = “12-31” ^ f (“01.07”) = “01-07”. (3)

The syntactic speci�cation is the same as before. Suppose
we use the PHOG in Figure 2(b) to guide the search towards
the desired solution: Rep(x , “.”, “-”), which is the inverse of
the previous solution Rep(x , “-”, “.”). Let us assume that we
are in the middle of the search, and a current sentential form
Rep(x , “.”, S). We explain how we encounter over�tting in
this situation. Note that the context is [“.”, Rep], the symbols
at the left sibling and the parent of the non-terminal symbol
S , respectively. To reach the solution, the production rule
S ! “-” should be applied to the current sentential form.
However, since the probability of the rule conditioned by
the context is small (P(S[“.”, Rep] ! “-”) = 0.002) compared
to the other rules, the search will not be guided toward it.

To solve this problem,we introduce a new learningmethod
inspired by transfer learning [19, 20], that enables PHOGs to
generalize well across synthesis problems whose solutions
have di�erent probability distributions. Our key idea is to
design a feature map that transforms sentences both in the
training and testing data into a common feature space. In
this example, we assume a feature map that transforms the
original constant symbols into featured terminal symbols
representing certain types of constant strings. Let I andO be
sets of strings that appear as input examples and output ex-
amples in the semantic speci�cation, respectively. Consider
the following categories of all possible constant strings:
• constIO represents the set of substrings of all the strings
in I \O

• constI represents the set of substrings of the strings in I
• constO represents the set of substrings of the strings inO
• const? represents all the remaining strings.

In the training phase, we learn a PHOG of a pivot gram-
mar that uses the above symbols instead of the constant
strings. The pivot grammar is depicted in Figure 3(a). In
contrast to learning the previous PHOG that only requires
the syntax of solutions of other existing synthesis problems,
we need semantic speci�cations as well for training. Using
a corresponding semantic speci�cation, each existing so-
lution can be transformed into one in which the original
constant symbols are replaced with the above symbols. For
example, the solution Rep(x , “-”, “.”) can be transformed into
Rep(x , constI , constO ) since “-” and “.” appear in the input
and output examples depicted in (2), respectively. Using the
transformed programs, we learn a PHOG depicted in Fig-
ure 3(b), which we call a pivot PHOG.
Returning to the over�tting problem, we can guide the

search appropriately using the pivot PHOG. The current sen-
tential form Rep(x , “.”, S) is transformed into Rep(x , constI , S)
since the string “.” appears in the input examples in (3).
The context, comprising symbols at the left sibling and par-
ent of S in the AST of the transformed sentential form, is
[constI , Rep]. Now the probability of the production rule
S ! “-” is assigned the probability of S[constI , Rep] !
constO since “-” appears in the output examples. Now that
the assigned probability is higher than that of the other pro-
duction rules, the search is guided toward the solution.
The rest of the paper is organized as follows. Section 3

presents our weighted search algorithm. Section 4 describes
how a PHOG is learned from training data. Section 5 presents
our experimental results. Section 6 discusses related work
and Section 7 concludes. Proofs of all stated theorems are
provided in the Appendix.

3 Weighted Search Algorithm
In this section, we describe our weighted search algorithm
based on A* search. We �rst formulate our problem of guid-
ing search-based synthesis using the CEGIS procedure with
a probabilistic program model. We then present a basic algo-
rithm that prioritizes likely solution candidates. Lastly, we
extend it with two orthogonal optimizations that are widely
used by existing search strategies.

3.1 Preliminaries
Context-free Grammar. A context-free grammar G is a
quadruple hN , �,R, Si where N is a �nite set of nonterminal
symbols, � is a �nite set of terminal symbols, R is a �nite
subset of N ⇥ (N [ �)⇤ where each member (A, �) is called a
production and is written asA ! � , and S is the start symbol
in N . A sequence of non-terminal and terminal symbols in
(N [ �)⇤ is called a sentential form. Throughout the paper,
for brevity, we only consider leftmost derivations, that is,
derivations in which productions are always applied to the
leftmost non-terminal symbol. Furthermore, we assume the
grammar is unambiguous in the sense that for all sentences,
there exists a unique leftmost derivation.

4
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• Suppose we want to complete                          (node (1))

• Search is not guided toward the solution ( node (2) is chosen 
instead of (3) ).

Problem of Overfitting

Rep(x, “.”, S)
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Figure 1. Graph of sentential forms derived from a PCFG.

Our main idea is to guide the search towards likely pro-
grams. We propose a weighted enumerative algorithm to
achieve this objective. Table 2 depicts an execution of this
algorithm on our example. Our algorithm is essentially the
same as the existing enumerative algorithm except that it
enumerates programs in order of likelihood instead of size.
Therefore, instead of enumerating all the smallest expres-
sions (e.g., “.”, “-”, x ), it �rst proposes x + “.”, which is found
only in the third iteration by the existing enumerative search.
In the next iteration, it quickly �nds the solution because it
avoids enumerating many unlikely programs (e.g., “.” + “.”).

2.1 A* Search for Weighted Enumeration
The �rst key contribution of our approach is an e�cient al-
gorithm based on A* search to enumerate programs in order
of decreasing probability. The algorithm is applicable to a
wide range of statistical program models, characterized in
Section 3. Figure 1(a) depicts one such model called PCFG
for the CFG of our synthesis problem, shown in (1). The
model takes a current non-empty sequence of terminal/non-
terminal symbols (i.e., a sentential form) and returns a prob-
ability for each production rule. For example, the probability
of the production rule S ! “.” is 0.72 when the current
sentential form is Rep(x , “-”, S).

Our algorithm conceptually works on a directed weighted
graph—constructed on demand—of sentential forms derived
from the given model. An example such graph for the PCFG
model above is shown in Figure 1(b). Each node of the graph
represents a sentential form that can be derived from the
start symbol S of the grammar. Each directed edge si ! sj
means that si expands to sj by applying a production rule to
the leftmost non-terminal symbol in si . Each edge is asso-
ciated with a real-valued weight which is the negative log
probability of its corresponding production rule provided by
the given model. The sum of the weights on a path from S
to a goal node is the negative log probability of the corre-
sponding program. Then, enumerating programs in order
of decreasing probability corresponds to enumerating goal
nodes by shortest (weighted) distance from the source node.

A straightforward way to perform this enumeration is to
employ uniform cost search algorithms such as Dijkstra’s

S

Rep(x,"-",".")

. . .

Rep(x,"-",S)

Rep(x,"-","-")

(1)

(2) (3)
� log2(0.001) � log2(0.72)

x

Rep

"-"

(c) AST and                    which is symbols
at left sibling and parent

A[context] � �

(a) PHOG when                is symbols
at left sibling and parent

P
S[“-”, Rep] � “.” 0.72
S[“-”, Rep] � “-” 0.001
S[“-”, Rep] � x 0.12
S[“-”, Rep] � S + S 0.02

· · ·

context

S

P
S[“.”, Rep] � “.” 0.001
S[“.”, Rep] � “-” 0.002
S[“.”, Rep] � x 0.01
S[“.”, Rep] � S + S 0.19

· · ·

(b) Graph of sentential forms weighted
by PHOG

context

Figure 2. Graph of sentential forms derived from a PHOG.

algorithm. This algorithm repeatedly chooses the next node
that is at the least distance from the start node until a solu-
tion is found. Since the least-distance path is always the one
chosen for an extension, it is guaranteed to enumerate goal
nodes in order of increasing distance (i.e., decreasing proba-
bility). However, as our evaluation in Section 5 shows, uni-
form cost search performs poorly in practice by expanding
a huge number of paths before reaching the solution node.

We address this problem by employing A* search [12] in-
stead of uniform cost search. A* signi�cantly improves upon
uniform cost search by �rst expanding nodes that appear to
lead to the next closest goal node. It identi�es such nodes by
using not only their (known) distance from the start node but
also an estimate of their (unknown) distance to the closest
goal node. The more accurate this estimate, the smaller the
number of nodes expanded by A*, and is typically a small
fraction of that explored by uniform cost search. We show
how to obtain accurate estimates in Section 3.3.

2.2 Transfer Learning for PHOG
The second key contribution is a new learning method based
on a state-of-the-art probabilistic model called probabilis-
tic higher-order grammar (PHOG) [6]. Figure 2(a) depicts
a PHOG for the original CFG. It allows the non-terminal
symbol on the left side of each production rule to be pa-
rameterized by a context that captures contextual informa-
tion around a production position. The context is a list of
terminal/non-terminal symbols that can be collected from
the abstract syntax tree (AST) of a sentential form.

A PHOG can be learned from known solutions of synthesis
problems that were solved by existing techniques. In this
example, we assume that a learner (detailed in Section 4)
infers that the symbols at the left sibling and the parent of
a production position provide meaningful information. In
Figure 2(c), arrows % show the movement over the AST
that leads to computing the context. The obtained context
is [“-”, Rep], and the probability of the production rule S !
“.” is 0.72. Therefore, the edge from (1) to (3) has weight

3

• PHOG sticks to syntactic information, which may lead to overfitting. 

 81

Rep(x,".","-")

. . .

Rep(x,".",S)

Rep(x,".",S+S)

(1)

(2) (3)

� log2(0.19) = 2.4

x

Rep

"." S

S
x

Rep(S,S,S)
S+S. . . . . .

� log2(0.002) = 8.97
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Transfer Learning

• Training data: solutions of existing synthesis problems 

• Testing data: solutions of unseen synthesis problems 

• They may follow different probability distributions because of 
diverse semantic specifications. 

• Transfer learning reduces discrepancy between the probability 
distributions of training and testing data 
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Figure 3. PHOG learned using our transfer learning method.

� log2(0.72) = 0.47. Under that same context, the probability
of the production rule S ! “-” is 0.01. Therefore, the edge
from (1) to (2) has weight � log2(0.001) = 9.97. Note that
now we avoid enumerating node (2) because the solution
node (3) is explored �rst as it is closer to the start node.

However, blindly using PHOGs for guiding synthesis hin-
ders their performance, because of the problem of over�tting.
Consider another synthesis problem of �nding a function f
following a semantic speci�cation comprising input-output
examples as follows:

f (“12.31”) = “12-31” ^ f (“01.07”) = “01-07”. (3)

The syntactic speci�cation is the same as before. Suppose
we use the PHOG in Figure 2(b) to guide the search towards
the desired solution: Rep(x , “.”, “-”), which is the inverse of
the previous solution Rep(x , “-”, “.”). Let us assume that we
are in the middle of the search, and a current sentential form
Rep(x , “.”, S). We explain how we encounter over�tting in
this situation. Note that the context is [“.”, Rep], the symbols
at the left sibling and the parent of the non-terminal symbol
S , respectively. To reach the solution, the production rule
S ! “-” should be applied to the current sentential form.
However, since the probability of the rule conditioned by
the context is small (P(S[“.”, Rep] ! “-”) = 0.002) compared
to the other rules, the search will not be guided toward it.

To solve this problem,we introduce a new learningmethod
inspired by transfer learning [19, 20], that enables PHOGs to
generalize well across synthesis problems whose solutions
have di�erent probability distributions. Our key idea is to
design a feature map that transforms sentences both in the
training and testing data into a common feature space. In
this example, we assume a feature map that transforms the
original constant symbols into featured terminal symbols
representing certain types of constant strings. Let I andO be
sets of strings that appear as input examples and output ex-
amples in the semantic speci�cation, respectively. Consider
the following categories of all possible constant strings:
• constIO represents the set of substrings of all the strings
in I \O

• constI represents the set of substrings of the strings in I
• constO represents the set of substrings of the strings inO
• const? represents all the remaining strings.

In the training phase, we learn a PHOG of a pivot gram-
mar that uses the above symbols instead of the constant
strings. The pivot grammar is depicted in Figure 3(a). In
contrast to learning the previous PHOG that only requires
the syntax of solutions of other existing synthesis problems,
we need semantic speci�cations as well for training. Using
a corresponding semantic speci�cation, each existing so-
lution can be transformed into one in which the original
constant symbols are replaced with the above symbols. For
example, the solution Rep(x , “-”, “.”) can be transformed into
Rep(x , constI , constO ) since “-” and “.” appear in the input
and output examples depicted in (2), respectively. Using the
transformed programs, we learn a PHOG depicted in Fig-
ure 3(b), which we call a pivot PHOG.
Returning to the over�tting problem, we can guide the

search appropriately using the pivot PHOG. The current sen-
tential form Rep(x , “.”, S) is transformed into Rep(x , constI , S)
since the string “.” appears in the input examples in (3).
The context, comprising symbols at the left sibling and par-
ent of S in the AST of the transformed sentential form, is
[constI , Rep]. Now the probability of the production rule
S ! “-” is assigned the probability of S[constI , Rep] !
constO since “-” appears in the output examples. Now that
the assigned probability is higher than that of the other pro-
duction rules, the search is guided toward the solution.
The rest of the paper is organized as follows. Section 3

presents our weighted search algorithm. Section 4 describes
how a PHOG is learned from training data. Section 5 presents
our experimental results. Section 6 discusses related work
and Section 7 concludes. Proofs of all stated theorems are
provided in the Appendix.

3 Weighted Search Algorithm
In this section, we describe our weighted search algorithm
based on A* search. We �rst formulate our problem of guid-
ing search-based synthesis using the CEGIS procedure with
a probabilistic program model. We then present a basic algo-
rithm that prioritizes likely solution candidates. Lastly, we
extend it with two orthogonal optimizations that are widely
used by existing search strategies.

3.1 Preliminaries
Context-free Grammar. A context-free grammar G is a
quadruple hN , �,R, Si where N is a �nite set of nonterminal
symbols, � is a �nite set of terminal symbols, R is a �nite
subset of N ⇥ (N [ �)⇤ where each member (A, �) is called a
production and is written asA ! � , and S is the start symbol
in N . A sequence of non-terminal and terminal symbols in
(N [ �)⇤ is called a sentential form. Throughout the paper,
for brevity, we only consider leftmost derivations, that is,
derivations in which productions are always applied to the
leftmost non-terminal symbol. Furthermore, we assume the
grammar is unambiguous in the sense that for all sentences,
there exists a unique leftmost derivation.
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The trained E������ is able to solve 236 new problems
in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [10], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.

Iter. Enumerated programs Counterex.

1 “.” “-.”
2 “.”, “-”,x|   {z   }

size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                  {z                                  }
size 3

“308-916”

3 “.”, “-”,x , · · · ,x + “.”, Rep(x , “.”, “-”), Rep(x , “-”, “.”)

Table 1. Enumeration using an unguided search.

Iter. Enumerated programs Counterex.

1 x + “.” “-.”
2 x + “.”,x + “-”, · · · , Rep(x , “-”, “.”)

Table 2. Enumeration using our weighted search.

We next illustrate how a typical search-based synthesizer
�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

Table 1 shows an execution of a state-of-the-art such algo-
rithm [27] on our example problem. It enumerates programs
generated by the given grammar in order of size. We step
through its execution of the CEGIS iterations.
In the �rst iteration, the candidate program proposed is

the �rst program that is generated, the expression “.”, because
pts is empty. Checking the correctness of this program with
respect to speci�cation 2 yields a counterexample input “-.”,
since the output of expression “.” on this input does not match
the desired output “..”. As a result, pts becomes {“-.”}.
In the second iteration, the algorithm �rst enumerates

all expressions of size 1. Since none of them are correct on
pts, it proceeds to enumerate expressions of size 3 (there
are no expressions of size 2). Finally, the algorithm reaches
the expression “.” + “.” which is correct on pts. However, it
still fails to verify and yields counterexample input “308-916”
(because the desired output is “308.916” whereas the output
is “..”). As a result, pts becomes {“-.”, “308-916”}.
In the third iteration, the algorithm eventually �nds the

desired program Rep(x , “-”, “.”), which is correct on with re-
spect to the given speci�cation.
In general, the number of programs enumerated by the

above algorithm grows exponentially in program size, de-
spite a powerful optimization to avoid enumerating unneces-
sary programs that are equivalent under inputs in pts. Our
main hypothesis is that existing search-based synthesizers
su�er this limitation because they assume that all possible
programs are equally likely. For example, “.” + “.” explored in
the second iteration above is an unlikely program.

2

A constant string 
appearing in the inputs

A constant string 
appearing in the outputs

Rep(x, “-”, “.”)

Rep(x, “.”, “-”)

A constant string 
appearing in the inputs
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Figure 3. PHOG learned using our transfer learning method.

� log2(0.72) = 0.47. Under that same context, the probability
of the production rule S ! “-” is 0.01. Therefore, the edge
from (1) to (2) has weight � log2(0.001) = 9.97. Note that
now we avoid enumerating node (2) because the solution
node (3) is explored �rst as it is closer to the start node.

However, blindly using PHOGs for guiding synthesis hin-
ders their performance, because of the problem of over�tting.
Consider another synthesis problem of �nding a function f
following a semantic speci�cation comprising input-output
examples as follows:

f (“12.31”) = “12-31” ^ f (“01.07”) = “01-07”. (3)

The syntactic speci�cation is the same as before. Suppose
we use the PHOG in Figure 2(b) to guide the search towards
the desired solution: Rep(x , “.”, “-”), which is the inverse of
the previous solution Rep(x , “-”, “.”). Let us assume that we
are in the middle of the search, and a current sentential form
Rep(x , “.”, S). We explain how we encounter over�tting in
this situation. Note that the context is [“.”, Rep], the symbols
at the left sibling and the parent of the non-terminal symbol
S , respectively. To reach the solution, the production rule
S ! “-” should be applied to the current sentential form.
However, since the probability of the rule conditioned by
the context is small (P(S[“.”, Rep] ! “-”) = 0.002) compared
to the other rules, the search will not be guided toward it.

To solve this problem,we introduce a new learningmethod
inspired by transfer learning [19, 20], that enables PHOGs to
generalize well across synthesis problems whose solutions
have di�erent probability distributions. Our key idea is to
design a feature map that transforms sentences both in the
training and testing data into a common feature space. In
this example, we assume a feature map that transforms the
original constant symbols into featured terminal symbols
representing certain types of constant strings. Let I andO be
sets of strings that appear as input examples and output ex-
amples in the semantic speci�cation, respectively. Consider
the following categories of all possible constant strings:
• constIO represents the set of substrings of all the strings
in I \O

• constI represents the set of substrings of the strings in I
• constO represents the set of substrings of the strings inO
• const? represents all the remaining strings.

In the training phase, we learn a PHOG of a pivot gram-
mar that uses the above symbols instead of the constant
strings. The pivot grammar is depicted in Figure 3(a). In
contrast to learning the previous PHOG that only requires
the syntax of solutions of other existing synthesis problems,
we need semantic speci�cations as well for training. Using
a corresponding semantic speci�cation, each existing so-
lution can be transformed into one in which the original
constant symbols are replaced with the above symbols. For
example, the solution Rep(x , “-”, “.”) can be transformed into
Rep(x , constI , constO ) since “-” and “.” appear in the input
and output examples depicted in (2), respectively. Using the
transformed programs, we learn a PHOG depicted in Fig-
ure 3(b), which we call a pivot PHOG.
Returning to the over�tting problem, we can guide the

search appropriately using the pivot PHOG. The current sen-
tential form Rep(x , “.”, S) is transformed into Rep(x , constI , S)
since the string “.” appears in the input examples in (3).
The context, comprising symbols at the left sibling and par-
ent of S in the AST of the transformed sentential form, is
[constI , Rep]. Now the probability of the production rule
S ! “-” is assigned the probability of S[constI , Rep] !
constO since “-” appears in the output examples. Now that
the assigned probability is higher than that of the other pro-
duction rules, the search is guided toward the solution.
The rest of the paper is organized as follows. Section 3

presents our weighted search algorithm. Section 4 describes
how a PHOG is learned from training data. Section 5 presents
our experimental results. Section 6 discusses related work
and Section 7 concludes. Proofs of all stated theorems are
provided in the Appendix.

3 Weighted Search Algorithm
In this section, we describe our weighted search algorithm
based on A* search. We �rst formulate our problem of guid-
ing search-based synthesis using the CEGIS procedure with
a probabilistic program model. We then present a basic algo-
rithm that prioritizes likely solution candidates. Lastly, we
extend it with two orthogonal optimizations that are widely
used by existing search strategies.

3.1 Preliminaries
Context-free Grammar. A context-free grammar G is a
quadruple hN , �,R, Si where N is a �nite set of nonterminal
symbols, � is a �nite set of terminal symbols, R is a �nite
subset of N ⇥ (N [ �)⇤ where each member (A, �) is called a
production and is written asA ! � , and S is the start symbol
in N . A sequence of non-terminal and terminal symbols in
(N [ �)⇤ is called a sentential form. Throughout the paper,
for brevity, we only consider leftmost derivations, that is,
derivations in which productions are always applied to the
leftmost non-terminal symbol. Furthermore, we assume the
grammar is unambiguous in the sense that for all sentences,
there exists a unique leftmost derivation.
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The trained E������ is able to solve 236 new problems
in 11 minutes on average per problem, compared to only 87
by EUS����� using 29 minutes on average. EUS����� fails
to solve the remaining problems even after 6 hours—a conse-
quence of the fact that the search space grows exponentially
with program size, despite the use of powerful techniques
to optimize the search (see Section 3.4). We also compare
E������ to F����F��� [10], a synthesizer tailored to the
string manipulation domain that is shipped with Microsoft
PowerShell. E������ outperforms F����F��� on 20 out of
22 synthesis problems and is 10x faster on average. E������
thus provides signi�cant performance gains that are comple-
mentary to those achieved by existing general-purpose and
domain-speci�c synthesizers.

We summarize the main contributions of our work:
• A general approach to accelerate search-based program
synthesis by using a probabilistic model to guide the search
towards likely programs. It targets the widely-used SyGuS
formulation and supports a wide range of models.

• Amethod based on transfer learning that enables to learn a
powerful model called probabilistic higher order grammar
(PHOG) from known solutions without over�tting.

• Implementation atop an open-source tool and evaluation
on benchmark problems from a variety of widely applica-
ble domains. The results demonstrate signi�cant perfor-
mance gains over existing synthesis techniques.

2 Overview
We illustrate our approach on the problem of synthesizing a
certain string transformation program. The desired program
is a function f that takes as input a string denoted x and
outputs a string with each hyphen in x replaced by a dot.
We formulate this problem as an instance of the syntax-

guided synthesis (SyGuS) problem [3]. The formulation com-
prises a syntactic speci�cation, in the form of a context-free
grammar that constrains the space of possible programs,
and a semantic speci�cation, in the form of a logical formula
which de�nes a correctness condition that f must satisfy.
The syntactic speci�cation for f is the grammar:

S ! x | “-” | “.” | S + S | Rep(S, S, S) (1)

where S is the start symbol, + is the string concatenation
operator, and Rep(s, t1, t2) is a new string where each oc-
currence of substring t1 in s is replaced by string t2. The
semantic speci�cation for f follows the programming by ex-
ample (PBE) paradigm and comprises input-output examples
given as a logical formula:1

f (“-.”) = “..” ^ f (“308-916”) = “308.916” ^ f (“1”) = “1” (2)

A solution to this synthesis problem is Rep(x , “-”, “.”).

1Our approach is also applicable to SyGuS instances that use semantic
speci�cation 8x : ... instead of input-output examples; we evaluate it on
both kinds of synthesis problems.

Iter. Enumerated programs Counterex.

1 “.” “-.”
2 “.”, “-”,x|   {z   }

size 1

, “-” + “-”, “.” + “-”, · · · , “.” + “.”|                                  {z                                  }
size 3

“308-916”

3 “.”, “-”,x , · · · ,x + “.”, Rep(x , “.”, “-”), Rep(x , “-”, “.”)

Table 1. Enumeration using an unguided search.

Iter. Enumerated programs Counterex.

1 x + “.” “-.”
2 x + “.”,x + “-”, · · · , Rep(x , “-”, “.”)

Table 2. Enumeration using our weighted search.

We next illustrate how a typical search-based synthesizer
�nds this solution using the CEGIS procedure that combines
a search algorithm with a veri�cation oracle. It maintains
a �nite set of program inputs pts that is initially empty. In
each iteration, it searches for a candidate program that is
correct on the inputs in pts, and veri�es the correctness of
the program according to the given semantic speci�cation.
If correct, it returns the program; otherwise, it adds new
counterexample inputs to pts and repeats the process. The
overall performance of this procedure depends heavily on
the search algorithm it uses to �nd candidate programs.

Table 1 shows an execution of a state-of-the-art such algo-
rithm [27] on our example problem. It enumerates programs
generated by the given grammar in order of size. We step
through its execution of the CEGIS iterations.
In the �rst iteration, the candidate program proposed is

the �rst program that is generated, the expression “.”, because
pts is empty. Checking the correctness of this program with
respect to speci�cation 2 yields a counterexample input “-.”,
since the output of expression “.” on this input does not match
the desired output “..”. As a result, pts becomes {“-.”}.
In the second iteration, the algorithm �rst enumerates

all expressions of size 1. Since none of them are correct on
pts, it proceeds to enumerate expressions of size 3 (there
are no expressions of size 2). Finally, the algorithm reaches
the expression “.” + “.” which is correct on pts. However, it
still fails to verify and yields counterexample input “308-916”
(because the desired output is “308.916” whereas the output
is “..”). As a result, pts becomes {“-.”, “308-916”}.
In the third iteration, the algorithm eventually �nds the

desired program Rep(x , “-”, “.”), which is correct on with re-
spect to the given speci�cation.
In general, the number of programs enumerated by the

above algorithm grows exponentially in program size, de-
spite a powerful optimization to avoid enumerating unneces-
sary programs that are equivalent under inputs in pts. Our
main hypothesis is that existing search-based synthesizers
su�er this limitation because they assume that all possible
programs are equally likely. For example, “.” + “.” explored in
the second iteration above is an unlikely program.

2

Rep(x, “-”, “.”) �! Rep(x, constI , constO)

Rep(x, “.”, “-”) �! Rep(x, constI , constO)

A constant string 
appearing in the inputs

A constant string 
appearing in the outputs

Transfer Learning using Common Features



Types of Constant Strings

• constIO represents the set of substrings of all the strings in I ∩ O

• constI represents the set of substrings of all the strings in I

• constO represents the set of substrings of all the strings in O

• const⊥ represents all the remaining strings.
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Pivot PHOG
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(b) A pivot PHOG learned using
the pivot grammar  

(a) A pivot grammar for string 
manipulation tasks

A[context#] ! �#

S ! x | S + S

| Rep(S, S, S)

| constIO | constI
| constO | const?

P
S[constO, Rep] ! constO 0.001
S[constO, Rep] ! constI 0.002
S[constO, Rep] ! x 0.01
S[constO, Rep] ! S + S 0.19

· · ·

P
S[constI , Rep] ! constO 0.72
S[constI , Rep] ! constI 0.001
S[constI , Rep] ! x 0.12
S[constI , Rep] ! S + S 0.02

· · ·



Search with the Pivot PHOG
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Before 

After S

Rep(x,constI,constO)

. . .

Rep(x,constI,S)

Rep(x,constI,S+S)

(1)

(2) (3)

� log2(0.19) = 2.4
� log2(0.72) = 0.47

x

Rep

constI S

Rep(x,".","-")

. . .

Rep(x,".",S)

Rep(x,".",S+S)

(1)

(2) (3)

� log2(0.19) = 2.4

x

Rep

"." S

S
x

Rep(S,S,S)
S+S. . . . . .

� log2(0.002) = 8.97
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Talk Outline

•   Overall Architecture

•   Illustrative Example

•   Empirical Evaluation
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Evaluation Setup

• Benchmarks: 

  -  1,167 problems from 2017 SyGuS competition and online 
forums

• Comparison to two baselines:

  -  EUSolver (general-purpose): winner of 2017 SyGuS competition

  -  FlashFill (domain-specific): string processing in spreadsheets
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Benchmarks
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STRING: End-user Programming 
205 problems

BITVEC: Efficient low-level algorithm 
750 problems

CIRCUIT: Attack-resistant crypto circuits  
212 problems



Comparison with EUSolver

• Training: 762 solved by EUSolver in 10 min

• Testing: 405 (timeout: 1 hour)

• # solved:  Euphony 236,  EUSolver 87
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Figure 8. Comparison of di�erent variants of E������.

Search Optimizations. Our approach is complementary to
existing search optimization techniques in program synthe-
sis. We already showed how our approach maintains the
optimizations in the existing enumerative search strategies
(Section 3.4). In addition, it could be combined with the idea
of leveraging type checking for synthesis [11, 22, 26], by us-
ing our method to guide the search within the search space
pruned using type information.

Domain Specializations. Recent proposals for speeding up
synthesis exploit domain knowledge in various forms, includ-
ing abstract semantics [33], domain-speci�c languages [5,
8, 25], templates [16] and features of input-output exam-
ples [21].While probabilisticmodels can themselves be viewed
as a kind of domain specialization, our feature maps allow
such models to generalize well across synthesis problems
in a domain when their solutions have di�erent probability
distributions.

Refutation Techniques. CVC4 [29] is a refutation-based
tool that also targets the SyGuS formulation. In contrast to
search-based techniques, refutation-based techniques use
an SMT solver to extracts solutions from unsatis�ability
proofs of the negated form of synthesis constraints. A tech-
nique called counterexample-guided quanti�er instantiation
(CEGQI) makes �nding such proofs feasible in practice. We
compared E������ to CVC4 on all the benchmark problems
in our evaluation. E������ solved 26x more instances and
was 4x faster than CVC4.

7 Conclusion
We presented a general approach to accelerate search-based
program synthesis by leveraging a probabilistic program
model to guide the search towards likely programs. Our
approach comprises a weighted search algorithm that is ap-
plicable to a wide range of probabilistic models. We also
proposed a method based on transfer learning that allows
a state-of-the-art probabilistic model, PHOG, to avoid over-
�tting. We demonstrated the e�ectiveness of the approach
on a large number of synthesis problems from a variety of
application domains. The experimental results show that our
approach outperforms existing general-purpose and domain-
speci�c synthesis tools.
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Search Optimizations. Our approach is complementary to
existing search optimization techniques in program synthe-
sis. We already showed how our approach maintains the
optimizations in the existing enumerative search strategies
(Section 3.4). In addition, it could be combined with the idea
of leveraging type checking for synthesis [11, 22, 26], by us-
ing our method to guide the search within the search space
pruned using type information.

Domain Specializations. Recent proposals for speeding up
synthesis exploit domain knowledge in various forms, includ-
ing abstract semantics [33], domain-speci�c languages [5,
8, 25], templates [16] and features of input-output exam-
ples [21].While probabilisticmodels can themselves be viewed
as a kind of domain specialization, our feature maps allow
such models to generalize well across synthesis problems
in a domain when their solutions have di�erent probability
distributions.

Refutation Techniques. CVC4 [29] is a refutation-based
tool that also targets the SyGuS formulation. In contrast to
search-based techniques, refutation-based techniques use
an SMT solver to extracts solutions from unsatis�ability
proofs of the negated form of synthesis constraints. A tech-
nique called counterexample-guided quanti�er instantiation
(CEGQI) makes �nding such proofs feasible in practice. We
compared E������ to CVC4 on all the benchmark problems
in our evaluation. E������ solved 26x more instances and
was 4x faster than CVC4.

7 Conclusion
We presented a general approach to accelerate search-based
program synthesis by leveraging a probabilistic program
model to guide the search towards likely programs. Our
approach comprises a weighted search algorithm that is ap-
plicable to a wide range of probabilistic models. We also
proposed a method based on transfer learning that allows
a state-of-the-art probabilistic model, PHOG, to avoid over-
�tting. We demonstrated the e�ectiveness of the approach
on a large number of synthesis problems from a variety of
application domains. The experimental results show that our
approach outperforms existing general-purpose and domain-
speci�c synthesis tools.

Acknowledgments
We thank the reviewers for insightful comments. We are also
grateful to Mukund Raghothaman and Arjun Radhakrishna
for their helpful suggestions. The �rst author is also a�li-
ated with Hanyang University. This research was supported
by DARPA under agreement #FA8750-15-2-0009 and NSF
awards #1138996, #1253867, and #1526270.

References
[1] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton.

2015. Suggesting Accurate Method and Class Names. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE 2015).

[2] Miltiadis Allamanis and Charles Sutton. 2014. Mining Idioms from
Source Code. In Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE 2014).

[3] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin,
Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-
guided synthesis. In Formal Methods in Computer-Aided Design (FM-
CAD ’13).

[4] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling
Enumerative Program Synthesis via Divide and Conquer. In Proceed-
ings of 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS ’17).

[5] M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tarlow.
2017. DeepCoder: Learning to Write Programs. In 5th International
Conference on Learning Representations (ICLR ’17).

Accelerating Program Synthesis using Learned Probabilistic Models PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

0 2 4 6 8 10 12 14 16 18
# Solved Instances (total = 34)

0

50

100

150

200

250

300

350

Ti
m

e 
(m

)

CIRCUIT
Euphony
EUSolver

Figure 7. Comparison between E������ and EUS����� on di�erent domains. The timeout for both solvers is set to one hour.

Figure 8. Comparison of di�erent variants of E������.

Search Optimizations. Our approach is complementary to
existing search optimization techniques in program synthe-
sis. We already showed how our approach maintains the
optimizations in the existing enumerative search strategies
(Section 3.4). In addition, it could be combined with the idea
of leveraging type checking for synthesis [11, 22, 26], by us-
ing our method to guide the search within the search space
pruned using type information.

Domain Specializations. Recent proposals for speeding up
synthesis exploit domain knowledge in various forms, includ-
ing abstract semantics [33], domain-speci�c languages [5,
8, 25], templates [16] and features of input-output exam-
ples [21].While probabilisticmodels can themselves be viewed
as a kind of domain specialization, our feature maps allow
such models to generalize well across synthesis problems
in a domain when their solutions have di�erent probability
distributions.

Refutation Techniques. CVC4 [29] is a refutation-based
tool that also targets the SyGuS formulation. In contrast to
search-based techniques, refutation-based techniques use
an SMT solver to extracts solutions from unsatis�ability
proofs of the negated form of synthesis constraints. A tech-
nique called counterexample-guided quanti�er instantiation
(CEGQI) makes �nding such proofs feasible in practice. We
compared E������ to CVC4 on all the benchmark problems
in our evaluation. E������ solved 26x more instances and
was 4x faster than CVC4.

7 Conclusion
We presented a general approach to accelerate search-based
program synthesis by leveraging a probabilistic program
model to guide the search towards likely programs. Our
approach comprises a weighted search algorithm that is ap-
plicable to a wide range of probabilistic models. We also
proposed a method based on transfer learning that allows
a state-of-the-art probabilistic model, PHOG, to avoid over-
�tting. We demonstrated the e�ectiveness of the approach
on a large number of synthesis problems from a variety of
application domains. The experimental results show that our
approach outperforms existing general-purpose and domain-
speci�c synthesis tools.
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Result for STRING benchmarks

• Euphony solved 78% within 1 min

• solved 8 on which EUSolver timed out

• outperformed EUSolver on all
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205 problems (training 123 / testing 82)
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Comparison with FlashFill (STRING)

• 113 problems handled by FlashFill

• Training: 91 solved by FlashFill in 10 s

• Testing: 22 (timeout: 10 min)

• Euphony outperforms in 20 / 22
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Efficacy of  A* Search

• Using PCFG and PHOG [Bielik et al. ICML’16]

• # Solved (timout: 1 hour):

  A* + PHOG:  236

  Dijkstra + PHOG: 209

  A* + PCFG: 133

  Dijkstra + PCFG: 22
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Search Optimizations. Our approach is complementary to
existing search optimization techniques in program synthe-
sis. We already showed how our approach maintains the
optimizations in the existing enumerative search strategies
(Section 3.4). In addition, it could be combined with the idea
of leveraging type checking for synthesis [11, 22, 26], by us-
ing our method to guide the search within the search space
pruned using type information.

Domain Specializations. Recent proposals for speeding up
synthesis exploit domain knowledge in various forms, includ-
ing abstract semantics [33], domain-speci�c languages [5,
8, 25], templates [16] and features of input-output exam-
ples [21].While probabilisticmodels can themselves be viewed
as a kind of domain specialization, our feature maps allow
such models to generalize well across synthesis problems
in a domain when their solutions have di�erent probability
distributions.

Refutation Techniques. CVC4 [29] is a refutation-based
tool that also targets the SyGuS formulation. In contrast to
search-based techniques, refutation-based techniques use
an SMT solver to extracts solutions from unsatis�ability
proofs of the negated form of synthesis constraints. A tech-
nique called counterexample-guided quanti�er instantiation
(CEGQI) makes �nding such proofs feasible in practice. We
compared E������ to CVC4 on all the benchmark problems
in our evaluation. E������ solved 26x more instances and
was 4x faster than CVC4.

7 Conclusion
We presented a general approach to accelerate search-based
program synthesis by leveraging a probabilistic program
model to guide the search towards likely programs. Our
approach comprises a weighted search algorithm that is ap-
plicable to a wide range of probabilistic models. We also
proposed a method based on transfer learning that allows
a state-of-the-art probabilistic model, PHOG, to avoid over-
�tting. We demonstrated the e�ectiveness of the approach
on a large number of synthesis problems from a variety of
application domains. The experimental results show that our
approach outperforms existing general-purpose and domain-
speci�c synthesis tools.
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• General heuristic function for A* search 

• How to preserve orthogonal search optimizations

• Feature maps for the three application domains

• Effectiveness of different models

In the paper …



Thank you.


