
Static Analysis with
Set-closure in Secrecy

1 Woosuk Lee, 2 Hyunsook Hong
1 Kwangkeun Yi, and 2 Jung Hee Cheon

1 Seoul Nat’l Univ. Computer Science Dept.
2 Seoul Nat’l Univ. Mathematical Science Dept.

SAS’15 @ Saint-Malo

Problem
• Two ways to use static analyzer

(1) (2)

(1) - target program is revealed.

(2) - analyzer is revealed.

runs in local
AnalyzerUser

Program

Analysis report

2

Problem
• Two ways to use static analyzer

(1) (2)

runs in local

(1) - target program is revealed.

(2) - analyzer is revealed.
Without information leaks

of both sides!

AnalyzerUser

Program

Analysis report

Our Solution

• Static analysis on encrypted programs

Analyzer

?

?
User

Program

Analysis report

• HE enables computation of arbitrary functions on
encrypted data.

Key : Homomorphic Encryption

f

0
x ⌘ f x

A Simple HE Scheme

Enc(µ 2 {0, 1}) = pq + 2r + µ

Decp(c) = (c mod p) mod 2

• Based on the approximate common divisor problem

• : integer as a secret key

• : random integer

• : random noise for security

p

r(⌧ |p|)

q

A Simple HE Scheme

Enc(µ 2 {0, 1}) = pq + 2r + µ

Decp(c) = (c mod p) mod 2

• Based on the approximate common divisor problem

• : integer as a secret key

• : random integer

• : random noise for security

p

r(⌧ |p|)

q

pq + 2r + µ

A Simple HE Scheme

Enc(µ 2 {0, 1}) = pq + 2r + µ

Decp(c) = (c mod p) mod 2

• Based on the approximate common divisor problem

• : integer as a secret key

• : random integer

• : random noise for security

p

r(⌧ |p|)

q

pq + 2r + µ

A Simple HE Scheme

• For ciphertexts ,  
the followings hold:

Decp(c1 + c2) = µ1 + µ2

Decp(c1 ⇥ c2) = µ1 ⇥ µ2

c1 Enc(µ1) c2 Enc(µ2)

• The scheme can evaluate all boolean circuits as  
 and in equal to XOR and AND.+ ⇥ Z2 = {0, 1}

• noise > → incorrect results after decryption

• noise increase: doubly by add, quadratically by mult.

Performance Hurdle :  
Growing Noise

• noise increases during operations.  
For ,ci = pqi + 2ri + µi

Analyzing SW Source in Secrecy 5

– µ Decsk(c̄): Outputs µ = ((c̄ mod p) mod 2).
– c̄add Add(c̄

1

, c̄
2

): Outputs c̄add = c̄
1

+ c̄
2

.
– c̄mult Mult(c̄

1

, c̄
2

): Outputs c̄mult = c̄
1

⇥ c̄
2

.

For ciphertexts c̄
1

 Enc(µ
1

) and c̄
2

 Enc(µ
2

), we know each c̄i is of the form
c̄i = pqi+2ri+µi for some integer qi and noise ri. Hence ((c̄i mod p) mod 2) = µi,
if |2ri + µi| < p/2. Then, the following equations hold:

c
1

+ c
2

= p(q
1

+ q
2

) + 2(r
1

+ r
2

) + µ
1

+ µ
2

| {z }

noise

,

c
1

⇥ c
2

= p(pq
1

q
2

+ · · ·) + 2(2r
1

r
2

+ r
1

µ
2

+ r
2

µ
1

) + µ
1

· µ
2

| {z }

noise

Based on these properties,

Decsk(c̄1 + c̄
2

) = µ
1

+ µ
2

and Decsk(c̄1 ⇥ c̄
2

) = µ
1

· µ
2

if the absolute value of 2(2r
1

r
2

+ r
1

µ
2

+ r
2

µ
1

) + µ
1

µ
2

is less than p/2. The
noise in the resulting ciphertext increases during homomorphic addition and
multiplication (twice and quadratically as much noise as before respectively). If
the noise becomes larger than p/2, the decryption result of the above scheme
will be spoiled. As long as the noise is managed, the scheme is able to potentially
evaluate all boolean circuits as the addition and multiplication in Z

2

corresponds
to the XOR and AND operations.

We consider somewhat homomorphic encryption (SWHE) schemes that adopt
the modulus-switching [5, 6, 11, 14] for the noise-management. The modulus-
switching reduces the noise by scaling the factor of the modulus in the ciphertext
space. SWHE schemes support a limited number of homomorphic operations on
each ciphertext, as opposed to fully homomorphic encryption schemes [8, 12,
13, 19] which are based on a di↵erent noise-management technique. But SWHE
schemes are more e�cient to support low-degree homomorphic computations.

In this paper, we will measure the e�ciency of homomorphic evaluation by
the multiplicative depth of an underlying circuit. The multiplicative depth is
defined as the number of multiplication gates encountered along the longest
path from input to output. When it comes to the depth of a circuit computing
a function f , we discuss the circuit of the minimal depth among any circuits
computing f . For example, if a somewhat homomorphic encryption scheme can
evaluate circuits of depth L, we may maximally perform 2L multiplications on
the ciphertexts maintaining the correctness of the result. We do not consider
the number of addition gates in counting the depth of a circuit because the
noise increase by additions is negligible compared with the noise increase by
multiplications. The multiplicative depth of a circuit is the most important factor
in the performance of homomorphic evaluation of the circuit in the view of both
the size of ciphertexts and the cost of per-gate homomorphic computation. Thus,
minimizing the depth is the most important in performance.

p

• Then, making larger ?  
cipher text size ↑ , thus computational cost ↑

• only small circuits (multi. depth < 100) are allowed for now.  
Multiplicative depth : log (max # of mult. in in-out paths)

• application-specific techniques are necessary.

Depth : 2
(additions are ignored)

p

Performance Hurdle :  
Growing Noise

Our Contributions

• We propose an inclusion-based pointer analysis in secrecy

• We encode the pointer analysis into homomorphic matrix
operations with application-specific optimizations:

• reducing depth on the fact the maximal pointer level is usually small

• reducing cost and ciphertext sizes by using ciphertext packing

Pointer Analysis

• Program : a finite set of assignments

• Resolution rules :

6 Anonymous Submission to National Cryptography Comptetition 2015

2.2 The BGV-type cryptosystem

Our underlying HE scheme is a variant of the Brakerski-Gentry-Vaikuntanathan
(BGV)-type cryptosystem [5, 14]. In this section, we only provide a brief review
of the cryptosystem [5]. For more details, please refer to the Appendix A.

Let �(X) be an irreducible polynomial over Z. The implementation of the
scheme is based on the polynomial operations in ring R = Z[X]/ (�(X)) which

is the set of integer polynomials of degree less than deg(�). Let Rp
def

= R/pR
be the message space for a prime p and Rq ⇥Rq be the ciphertext space for an
integer q. Now, we describe the BGV cryptosystem as follows:

– ((a, b); s) BGV.KG(1�,�, q): Choose a secret key s and a noise polynomial
e from a discrete Gaussian distribution over R with standard deviation �.
Choose a random polynomial a from Rq and generate the public key (a, b =
a · s+ p · e) 2 Rq ⇥Rq. Output the public key pk = (a, b) and the secret key
sk = s.

– c̄ BGV.Encpk(µ): To encrypt a message µ 2 Rp, choose a random poly-
nomial v whose coe�cients are in {0,±1} and two noise polynomials e

0

, e
1

.
Output the ciphertext c = (c

0

, c
1

) = (bv+ pe
0

+ µ, av+ pe
1

) mod (q,�(X)).
– µ BGV.Decsk(c̄): Given a ciphertext c̄ = (c

0

, c
1

), it outputs µ = (((c
0

�
c
1

· s) mod q) mod p).
– c̄add BGV.Addpk(c̄1, c̄2; evk): Given ciphertexts c̄

1

= BGV.Enc(µ
1

) and
c̄
2

= BGV.Enc(µ
2

), it outputs the ciphertext c̄add = BGV.Enc(µ
1

+ µ
2

).
– c̄mult BGV.Multpk(c̄1, c̄2; evk): Given ciphertexts c̄

1

= BGV.Enc(µ
1

) and
c̄
2

= BGV.Enc(µ
2

), it outputs the ciphertext c̄mult = BGV.Enc(µ
1

· µ
2

).

2.3 Security Model

We assume that program owners and analyzer servers are semi-honest. In this
model, the analyzer runs the protocol exactly as specified, but may try to learn as
much as possible about the program information. However, in our method, since
programs are encrypted under the BGV-type cryptosystem which is secure under
the hardness of the ring learning with errors (RLWE) problem (see Appendix A
for the details), analyzers cannot learn no more information than the program
size.

2.4 Pointer Analysis

We present a brief review of pointer analysis. A pointer analysis attempts to
determine what memory location a pointer variable can point to. In this paper,
we consider a tiny language consisting of primitive assignments involving just
the operations * and &. A program P is a finite set of assignments A:

A ! x := &y | x := y | ⇤x := y | x := ⇤y

Pointer analysis result is typically represented as a points-to set pt(x) for
each variable x, i.e., pt : Var ! 2Var where Var is the set of pointer variables.

6 Woosuk Lee, Hyunsook Hong, Kwangkeun Yi, and Jung Hee Cheon

We present a pointer analysis algorithm with simple resolution rules in a similar
manner to [18]. Given some program P , we construct resolution rules as specified
in Table 2. In the first rule, the side condition “if x = &y in P” indicates that
there is an instance of this rule for each occurrence of an assignment of the form
x = &y in P . The side conditions in the other rules are similarly interpreted.
Intuitively, an edge x �! &y indicates that x can point to y. An edge x �! y

indicates that for any variable v, if y may point to v then x may point to v. The
pointer analysis is applying the resolution rules until reaching a fixpoint.

x �! &y

(if x = &y in P)
(New) x �! y

(if x = y in P) (Copy)

x �! &z

y �! z

(if y = ⇤x in P) (Load)
x �! &z

z �! y

(if ⇤x = y in P) (Store)

x �! z z �! &y

x �! &y (Trans)

Table 2: Resolution rules for pointer analysis.

3.2 The Pointer Analysis in Secrecy

The analysis in secrecy will be performed in the following 3 steps. First, a pro-
gram owner derives numbers that represent his program and encrypt them under
a HE scheme. The encrypted numbers will be given to an analysis server. Next,
the server performs homomorphic evaluation of an underlying arithmetic circuit
representing the pointer analysis with the inputs from the program owner. Fi-
nally, the program owner obtains an encrypted analysis result and recovers a set
of points-to relations by decryption.

Before beginning, we define some notations. We assume a program owner
assigns a number to every variable using some numbering scheme. In the rest of
the paper, we will denote a variable numbered i by x

i

. In addition, to express
the arithmetic circuit of the pointer analysis algorithm, we define the notations
�i,j and ⌘i,j in Z for i, j = 1, · · · ,m by

�i,j 6= 0 i↵ An edge x
i

�! &x
j

is derived by the resolution rules.

⌘i,j 6= 0 i↵ An edge x
i

�! x

j

is derived by the resolution rules.

for variables x
i

and x

j

, and the number m of pointer variables.

Inputs from Client A client (program owner) derives the following numbers
that represent his program P (here, m is the number of variables):

{(�i,j , ⌘i,j , ui,j , vi,j) 2 Z⇥ Z⇥ {0, 1}⇥ {0, 1} | 1 i, j m}

P

Pointer Analysis

int *x1, *x2, *x3
int **x4
int x5
x2 = &x5
x1 = x2
x4 = &x1
x4 = &x3
*x4 = x2

• Example

x4 �! &x1

x4 �! &x3

1

2

3

4

{5}

{1,3}

Initialization

x2 �! &x5

Pointer Analysis

int *x1, *x2, *x3
int **x4
int x5
x2 = &x5
x1 = x2
x4 = &x1
x4 = &x3
*x4 = x2

• Example

1

2

3

4

{5}

{1,3}

Initialization

Pointer Analysis

int *x1, *x2, *x3
int **x4
int x5
x2 = &x5
x1 = x2
x4 = &x1
x4 = &x3
*x4 = x2

• Example
Edge addition

1

2

3

4

{5}

{1,3}

Pointer Analysis

int *x1, *x2, *x3
int **x4
int x5
x2 = &x5
x1 = x2
x4 = &x1
x4 = &x3
*x4 = x2

• Example
Propagation

1

2

3

4

{5}

{1,3}

{5}

{5}

Pointer Analysis

int *x1, *x2, *x3
int **x4
int x5
x2 = &x5
x1 = x2
x4 = &x1
x4 = &x3
*x4 = x2

• repeating two steps until reaching a fix point

Edge addition Propagation

1

2

3

4

{5}

{1,3}

1

2

3

4

{5}

{1,3}

{5}

{5}

Notations

�i,j 6= 0 ()

⌘i,j 6= 0 ()

⌘2,1 6= 0

•  
 
 
ex)

• (our message space)

Enc(µ 2 Zt) = pq + tr + µ

Zt = {0, 1, 2, · · · , t� 1}

Decp(c) = (c mod p) mod t

{5} 2 1
�2,5 6= 0

xi �! &xj

xi �! xj

Analyzer

?

?
User

Program

Analysis reportInputs from Client

• A client derives the following numbers  
(: the number of variables)  
 

6 Woosuk Lee, Hyunsook Hong, Kwangkeun Yi, and Jung Hee Cheon

We present a pointer analysis algorithm with simple resolution rules in a similar
manner to [18]. Given some program P , we construct resolution rules as specified
in Table 2. In the first rule, the side condition “if x = &y in P” indicates that
there is an instance of this rule for each occurrence of an assignment of the form
x = &y in P . The side conditions in the other rules are similarly interpreted.
Intuitively, an edge x �! &y indicates that x can point to y. An edge x �! y

indicates that for any variable v, if y may point to v then x may point to v. The
pointer analysis is applying the resolution rules until reaching a fixpoint.

x �! &y

(if x = &y in P)
(New) x �! y

(if x = y in P) (Copy)

x �! &z

y �! z

(if y = ⇤x in P) (Load)
x �! &z

z �! y

(if ⇤x = y in P) (Store)

x �! z z �! &y

x �! &y (Trans)

Table 2: Resolution rules for pointer analysis.

3.2 The Pointer Analysis in Secrecy

The analysis in secrecy will be performed in the following 3 steps. First, a pro-
gram owner derives numbers that represent his program and encrypt them under
a HE scheme. The encrypted numbers will be given to an analysis server. Next,
the server performs homomorphic evaluation of an underlying arithmetic circuit
representing the pointer analysis with the inputs from the program owner. Fi-
nally, the program owner obtains an encrypted analysis result and recovers a set
of points-to relations by decryption.

Before beginning, we define some notations. We assume a program owner
assigns a number to every variable using some numbering scheme. In the rest of
the paper, we will denote a variable numbered i by x

i

. In addition, to express
the arithmetic circuit of the pointer analysis algorithm, we define the notations
�i,j and ⌘i,j in Z for i, j = 1, · · · ,m by

�i,j 6= 0 i↵ An edge x
i

�! &x
j

is derived by the resolution rules.

⌘i,j 6= 0 i↵ An edge x
i

�! x

j

is derived by the resolution rules.

for variables x
i

and x

j

, and the number m of pointer variables.

Inputs from Client A client (program owner) derives the following numbers
that represent his program P (here, m is the number of variables):

{(�i,j , ⌘i,j , ui,j , vi,j) 2 Z⇥ Z⇥ {0, 1}⇥ {0, 1} | 1 i, j m}
Static Analysis with Set-closure in Secrecy 7

which are initially assigned as follows:

�i,j
⇢
1 if 9x

i

= &x
j

0 otherwise
⌘i,j

⇢
1 if 9x

i

= x

j

or i = j
0 otherwise

ui,j
⇢
1 if 9x

j

= ⇤x
i

0 otherwise
vi,j

⇢
1 if 9⇤x

j

= x

i

0 otherwise

In the assignment of �i,j , the side condition 9xi = &x
j

indicates that there is the
assignment x

i

= &x
j

in the program P . The other side conditions are similarly
interpreted.

The program owner encrypts the numbers using a HE scheme and provides
them to the server. We denote the encryption of �i,j , ⌘i,j , ui,j , and vi,j by �̄i,j ,
⌘̄i,j , ūi,j , and v̄i,j , respectively. Therefore, the program owner generates 4m2

ciphertexts where m is the number of pointer variables.

Server’s Analysis Provided the set of the ciphertexts from the program owner,
the server homomorphically applies the resolution rules. With a slight abuse of
notation, we will denote + and · as homomorphic addition and multiplication
respectively to simplify the presentation.

We begin with applying the Trans rule in Table 2. For i, j = 1, · · · ,m, the
server updates �̄i,j as follows:

�̄i,j
Pm

k=1 ⌘̄i,k · �̄k,j

If edges x
i

�! x

k

and x

k

�! &x
j

are derived by the resolution rules for some
variable x

k

, then the edge x

i

�! &x
j

will be derived by the Trans rule and the
value �i,j will have a positive integer. If there is no variable x

k

that satisfies the
conditions for all k = 1, · · · ,m, there will be no update on �i,j (* ⌘i,i = 1).

Next, we describe applying the Load rule.

⌘̄i,j ⌘̄i,j +
Pm

k=1 ūi,k · �̄k,j

If an edge x

k

�! &x
j

is derived and the program P has a command x

i

:= ⇤x
k

and for some integer k, then the edge x
i

�! x

j

will be derived and ⌘i,j will have
a positive value. If none of variables x

k

satisfies the conditions, there will be no
update on ⌘i,j .

Finally, to apply the Store rule, the server performs the following operations:

⌘̄i,j ⌘̄i,j +
Pm

k=1 v̄j,k · �̄k,i

If an edge x

k

�! &x
i

is derived and the program P has a command ⇤x
k

:= x

j

for some variable x
k

, then an edge x
i

�! x

j

will be derived and ⌘i,j will have a
non-zero value.

Note that the server must repeat applying the rules as if in the worst case
since the server cannot know whether a fixpoint is reached during the operations.
The server may obtain a fixpoint by repeating the following two steps in turn
m2 times:

m

Analyzer

?

?
User

Program

Analysis report

• The client encrypts the derived numbers using a
HE scheme and provides the following set to
server 
 

Analyzing SW Source in Secrecy 9

3.2 The Pointer Analysis in Secrecy

The analysis in secrecy will be performed in the following 3 steps. First, a pro-
gram owner derives numbers that represent his program and encrypt them under
a HE scheme. The encrypted numbers will be given to an analysis server. Next,
the server performs homomorphic evaluation of an underlying arithmetic circuit
representing the inclusion-based pointer analysis with the inputs from the pro-
gram owner. Finally, the program owner obtains an encrypted analysis result
and recovers a set of points-to relations by decryption.

Before beginning, we define some notations. We assume a program owner
assigns a number to every variable using some numbering scheme. In the rest of
the paper, we will denote a variable numbered i by x

i

. In addition, to express
the arithmetic circuit of the pointer analysis algorithm, we define the notations
�i,j and ⌘i,j in Z for i, j = 1, · · · ,m by

�i,j 6= 0 i↵ An edge x
i

�! &x
j

is derived by the resolution rules.

⌘i,j 6= 0 i↵ An edge x
i

�! x

j

is derived by the resolution rules.

for variables x
i

and x

j

, and the number m of pointer variables.

Inputs from Client A client (program owner) derives the following numbers
that represent his program P (here, m is the number of variables):

{(�i,j , ⌘i,j , ui,j , vi,j) 2 Z⇥ Z⇥ {0, 1}⇥ {0, 1} | 1 i, j m}
��

�̄i,j , ⌘̄i,j , ūi,j , v̄i,j
�

| 1 i, j m

which are initially assigned as follows:

�i,j
⇢

1 if 9x
i

= &x
j

0 otherwise
⌘i,j

⇢

1 if 9x
i

= x

j

or i = j
0 otherwise

ui,j
⇢

1 if 9x
j

= ⇤x
i

0 otherwise
vi,j

⇢

1 if 9⇤x
j

= x

i

0 otherwise

In the assignment of �ij , the side condition 9xi = &x
j

indicates that there is the
assignment x

i

= &x
j

in the program P . The other side conditions are similarly
interpreted.

The program owner encrypts the numbers using a HE scheme and provides
them to the server. We denote the encryption of �i,j , ⌘i,j , ui,j , and vi,j by �̄i,j ,
⌘̄i,j , ūi,j , and v̄i,j , respectively. Therefore, the program owner generates 4m2

ciphertexts where m is the number of pointer variables.

Server’s Analysis Provided the set of the ciphertexts from the program owner,
the server homomorphically applies the resolution rules. With a slight abuse of
notation, we will denote + and · as homomorphic addition and multiplication
respectively to simplify the presentation.

• Total # of cipher texts = 4m2

Inputs from Client

Analyzer

?

?
User

Program

Analysis reportServer’s Analysis

• Ex) deriving in cipher-world

1

2

3

4
{...}

{...}

{...}

{...}

x1 �! &x5

1

2

3

4
{...}

{...}

{...}

{...}

Server’s Analysis
Analyzer

?

?
User

Program

Analysis report

�̄1,5 �̄1,5 + ⌘̄1,2 · �̄2,5
+ ⌘̄1,3 · �̄3,5
+ ⌘̄1,4 · �̄4,5

• Ex) deriving in cipher-worldx1 �! &x5

non-zero

non-zero

Server’s Analysis
Analyzer

?

?
User

Program

Analysis report

�̄1,5 �̄1,5 + ⌘̄1,2 · �̄2,5
+ ⌘̄1,3 · �̄3,5
+ ⌘̄1,4 · �̄4,5

1

2

3

4

{5}

{5}

• Ex) deriving in cipher-worldx1 �! &x5

• Ex) deriving in cipher-world

1

2

3

4
{...}

{...}

{...}

{...}

Server’s Analysis
Analyzer

?

?
User

Program

Analysis report

x3 �! x2

⌘̄3,2 ⌘̄3,2 + v̄2,1 · �̄1,3
+ v̄2,3 · �̄3,3
+ v̄2,4 · �̄4,3

non-zero

non-zero

Server’s Analysis
Analyzer

?

?
User

Program

Analysis report

⌘̄3,2 ⌘̄3,2 + v̄2,1 · �̄1,3
+ v̄2,3 · �̄3,3
+ v̄2,4 · �̄4,3

1

2

3

4 {3,..}

⇤x4 := x2 in P

• Ex) deriving in cipher-worldx3 �! x2

Analyzer

?

?
User

Program

Analysis reportServer’s Analysis

• Repeat the following 2 steps times

• repeat propagation times

• edge addition

• NOTE : we must repeat as if in the worst case
since we do not know whether a fixpoint reached.

m2

1

2

3

4
{...}

{...}

{...}

{...}

m� 1

Analyzer

?

?
User

Program

Analysis report

Output Determination
• The client receives the updated points-to set info.

from the server

• derives points-to relations involving variables of
interest, namely xi

Analyzing SW Source in Secrecy 11

We need O(m2 logm) multiplicative depth in total. Because performing the
step 1 entails m homomorphic multiplications on each �̄ij , and repeating the two

steps m2 times performs about mm2

homomorphic multiplications on each �̄ij .

Output Determination The client receives the updated {�̄i,j | 1 i, j m}
from the server and recovers a set of points-to relations as follows:

{x
i

�! &x
j

| HE.Decsk(�̄i,j) 6= 0 and 1 i, j m}

Why do we not represent the algorithm by a Boolean circuit? One
may wonder why we represent the pointer analysis algorithm by an arithmetic
circuit rather than a Boolean circuit. As an example of applying the Trans rule,
we might update �i,j by the following method:

�i,j
_

1km

⌘i,k ^ �k,j

However, this representation causes more multiplicative depth than our current
approach. The OR operation consists of the XOR and AND operations as follows:

x _ y
def

= (x ^ y)� x� y

Note that the addition and multiplication in Z
2

correspond to the XOR and AND
operations, respectively. Since the OR operation requires a single multiplication
over ciphertexts, this method requires m more multiplications than our current
method to update �i,j once.

4 Improvement of the Pointer Analysis in Secrecy

In this section, we present three techniques to reduce the cost of the basic ap-
proach described in the section 5.2. We begin with problems of the basic approach
followed by our solutions.

4.1 Problems of the Basic Approach

The basic scheme has the following problems that make the scheme impractical.

– Huge # of homomorphic multiplications: The scheme described in the sec-
tion 5.2 can be implemented with a SWHE scheme of the depth O(m2 logm).
Homomorphic evaluation of a circuit over the hundreds depth is regarded
unrealistic in usual. The depth of the arithmetic circuit described in the
section 5.2 exceeds 300 even if a program has only 10 variables.

– Huge # of ciphertexts: The basic approach requires 4m2 ciphertexts, where
m is the number of pointer variables. When a program has 1000 variables, 4
million ciphertexts are necessary. For instance, the size of a single ciphertext
in the BGV cryptosystem is about 2MB when the depth is 20. In this case,
the scheme requires 7.6 TB memory space for all the ciphertexts.

Analyzing SW Source in Secrecy 11

We need O(m2 logm) multiplicative depth in total. Because performing the
step 1 entails m homomorphic multiplications on each �̄ij , and repeating the two

steps m2 times performs about mm2

homomorphic multiplications on each �̄ij .

Output Determination The client receives the updated {�̄i,j | 1 i, j m}
from the server and recovers a set of points-to relations as follows:

{x
i

�! &x
j

| HE.Decsk(�̄i,j) 6= 0 and 1 i, j m}

Why do we not represent the algorithm by a Boolean circuit? One
may wonder why we represent the pointer analysis algorithm by an arithmetic
circuit rather than a Boolean circuit. As an example of applying the Trans rule,
we might update �i,j by the following method:

�i,j
_

1km

⌘i,k ^ �k,j

However, this representation causes more multiplicative depth than our current
approach. The OR operation consists of the XOR and AND operations as follows:

x _ y
def

= (x ^ y)� x� y

Note that the addition and multiplication in Z
2

correspond to the XOR and AND
operations, respectively. Since the OR operation requires a single multiplication
over ciphertexts, this method requires m more multiplications than our current
method to update �i,j once.

4 Improvement of the Pointer Analysis in Secrecy

In this section, we present three techniques to reduce the cost of the basic ap-
proach described in the section 5.2. We begin with problems of the basic approach
followed by our solutions.

4.1 Problems of the Basic Approach

The basic scheme has the following problems that make the scheme impractical.

– Huge # of homomorphic multiplications: The scheme described in the sec-
tion 5.2 can be implemented with a SWHE scheme of the depth O(m2 logm).
Homomorphic evaluation of a circuit over the hundreds depth is regarded
unrealistic in usual. The depth of the arithmetic circuit described in the
section 5.2 exceeds 300 even if a program has only 10 variables.

– Huge # of ciphertexts: The basic approach requires 4m2 ciphertexts, where
m is the number of pointer variables. When a program has 1000 variables, 4
million ciphertexts are necessary. For instance, the size of a single ciphertext
in the BGV cryptosystem is about 2MB when the depth is 20. In this case,
the scheme requires 7.6 TB memory space for all the ciphertexts.

Problems of the Approach

• Huge multiplicative depth : O(m2 log m)  
(∵ [(update) x m times ⇒ (update)] x m2 times  
 ex) m = 10 ⇒ depth > 300

• Huge # of ciphertexts : 4m2 

 ex) m = 1000 ⇒ 4M ciphertexts take over 8TB

• Decryption error may happen : during operations,
non-zero values can be zero by accident.  
(msg space is , and values may be the modulus. (e.g.))

�i,j ⌘i,j

t in ZtZt

Our Optimized Solution

• Huge multiplicative depth ➾ Level-by-level analysis  
Depth: O(m2 log m) → O(n log m) (n : maximal pointer level (< 5))  

(e.g. ptl(x : int**) = 2, ptl(y : int***) = 3)

• Huge # of ciphertexts ➾ Ciphertext packing  
 

 

necessary cipher texts : 4m2 → (2n+2)m

• Decryption error may happen ➾ Randomize the messages  
balancing between ciphertext size and the prob. of incorrectness  
e.g. the success prob. is about 95% when n=2, m=1000, t=503

ūi,1, ūi,2, · · · , ūi,m �! hui,1, ui,2, · · ·ui,mi

Homomorphic Matrix Multiplication
• The pointer analysis can be represented in matrix form.

• We encrypt a matrix in row-order

• e.g.  
 

• We can perform homomorphic matrix addition,
multiplication, and transposition.

Analyzing SW Source in Secrecy 15

Step Integer form Matrix form

Propagation �i,j
Pm

k=1

⌘i,k · �k,j � H ·�
Edge addition (Load) ⌘i,j ⌘i,j +

Pm
k=1

ui,k · �k,j H H + U ·�
Edge addition (Store) ⌘i,j ⌘i,j +

Pm
k=1

vj,k · �k,i H H + (V ·�)T

Rp can be viewed as a vector ofm di↵erent small polynomials, (µ
1

(X), · · · , µm(X))
such that µi(X) = (µ(X) modulo Fi(X)) for i = 1, · · · ,m.

From this observation, we can encrypt a vector µ = (µ
1

, · · · , µm) of plain-
texts in

Qm
i=1

Zp into a single ciphertext by the following transitions:

Zp ⇥ · · ·⇥ Zp �!
Qm

i=1

Zp[X]/ (Fi(X)) �! Zp[X]/ (�(X)) �! Rq

(µ
1

, · · · , µm)
id7�! (µ

1

(X), · · · , µm(X))
CRT7�! µ(X)

BGV.Enc7�! c̄

First, we view a component µi in a vector µ = (µ
1

, · · · , µm) as a contant poly-
nomial µi 2 Zp[X]/ (Fi(X)) for i = 1, · · · ,m. Then, we can compute the unique
polynomial µ(X) 2 Rp satisfying µ(X) = µi mod (p, Fi(X)) for i = 1, · · · ,m by
the Chinese Remainder Theorem (CRT) of polynomials. Finally, to encrypt a
vector µ = (µ

1

, · · · , µm) in
Qm

i=1

Zp, we encrypt the polynomial µ(X) 2 Rp into
a ciphertext c̄ which is denoted by BGV.Enc (µ

1

, · · · , µm) . For more details to
the ciphertext packing, we suggest that readers see the paper [20].

Homomorphic Matrix Operations Applying the resolution rules in the level-
by-level analysis in the section 4.3 can be re-written in a matrix form as shown

in Table ??. In Table ??, �` = [�(`)i,j], H` = [⌘(`)i,j], U = [ui,j], and V = [vi,j]

are m ⇥ m integer matrices. Let the i-th row of �` and H` be �(`)i and ⌘(`)
i

respectively. And we denote the encryptions as �̄
(`)
i = BGV.Enc(�(`)i) and ⌘̄(`)

i =

BGV.Enc(⌘(`)
i).

We follow the methods in [15] to perform multiplication between encrypted
matrices. We use the Replicate homomorphic operation supported by the BGV
scheme [15]. For a given ciphertext c̄ = BGV.Enc(µ

1

, · · · , µm), the operation
Replicate(c̄, i) generates a ciphertext BGV.Enc(µi, · · · , µi) for i = 1, · · · ,m. Us-
ing the operation, we can generate an encryption of the i-th row of (H` ·�`) as
follows:

BGV.Mult
⇣

Replicate(⌘̄(`)
i , 1), �̄

(`)
1

⌘

+ · · · + BGV.Mult
⇣

Replicate(⌘̄(`)
i ,m), �̄

(`)
m

⌘

.

Note that this method does not a↵ect the asymptotic notation of the multi-
plicative depth since the operation Replicate entails only a single multiplication.

To compute a transpose of an encrypted matrix, we use the masking and
cyclic rotation techniques described in [15]. Algorithms for the homomorphic
operations on encrypted matrices are described in Fig. 4 and 5 in Appendix B.

�̄i BGV.Enc(�i,1, · · · , �i,m)

�̄ h�̄i, · · · , �̄mi

Experimental Result

• HW: Parallelized on 24 cores of Intel Xeon 2.6 GHz  
SW: HElib 1.3 - a library that implements BGV scheme

• Security : 72 (272 brute force needed to break)22 Anonymous Submission to National Cryptography Comptetition 2015

Table 8: Experimental Result (Inclusion-based)

Program LOC # Var Enc Propagation Edge addition Total Depth

toy 10 9 17s 28m 49s 5m 58s 35m 4s 37

buthead-1.0 46 17 48s 5h 41m 36s 56m 19s 6h 38m 43s 43

wysihtml-0.13 202 32 1m 39s 10h 41m 52s 1h 48m 39s 12h 30m 31s 49

cd-discid-1.1 259 41 2m 12s 12h 5m 20s 2h 3m 21s 14h 10m 53s 49

Enc : time for program encryption, Depth : the depth required for the analysis

Propagation : time for homomorphic applications of the Trans rule

Edge addition : time for homomorphic applications of the Load and Store rules

Table 9: Experimental Result (Equality-based)

Program LOC # Var Enc Trans Prop Total Depth

toy 10 9 2s 1m 53s 45s 2m 40s 18

buthead-1.0 46 17 5s 4m 14s 1m 25s 5m 44s 21

wysihtml-0.13 202 32 11s 1h 28m 51s 25m 23s 1h 54m 25s 24

cd-discid-1.1 259 41 14s 3h 40m 44s 1h 3m 4s 4h 44m 1s 24

nlkain-1.0 1,234 108 43s 19h 44m 11s 2h 28m 1s 22h 12m 55s 27

Output Determination The client receives the updated {µ̄(`)
i,j | 1 i, j

m, 1 ` < n} from the server and recovers a solution as follows:

pt(x
i

) = {x
j

| HE.Decsk(µ̄(`�1)

i,j) 6= 0}.

6 Experimental Result

In this section, we demonstrate the performance of the pointer analysis in se-
crecy. In our experiment, we use HElib library [15], an implementation of the
BGV cryptosystem. We test on 4 small C example programs including tiny linux
packages. The experiment was done on a Linux 3.13 system running on 24 cores
of Intel 2.6 GHz box with 128GB of main memory.

Tables 8,9 show the result. We set the security parameter 72 which is usually
considered large enough. It means a ciphertext can be broken in a worst case
time proportional to 272. In all the programs, the maximum pointer level is 2.
The equality-based analysis runs 3-69x faster than the inclusion-based analysis.

7 Discussion

By combining language and cryptographic primitives, we confirm that the ho-
momorphic encryption scheme can unleash the possibility of static analysis of

Applications

• Privacy preserving static-analysis-as-a-service

• e.g. http://rosaec.snu.ac.kr/clinic (our own)  
 https://scan.coverity.com

• Privacy preserving app reviewing

• e.g. Apple app review system (currently on executables)

• reviewing on encrypted app sources

Future Direction

• Adapting other kinds of analysis operations
(arbitrary , , semantic operations) into HE
schemes.

• Allowing users to encrypt only sensitive sub-parts
of programs

t v

Backup

Level-by-level Analysis

• Analyzing the same pointer level together  
from the highest to lowest

• Lower levels cannot affect higher levels.  
ex) value of x may change by  
 
 
 
 
p and y have higher or equal level compared to x.

10 Woosuk Lee, Hyunsook Hong, Kwangkeun Yi, and Jung Hee Cheon

We assume that type-casting a pointer value to a lower or higher-level pointer
is absent in programs. For example, we do not consider a program that has type-
casting from void* to int** because the pointer level increases from 1 to 2.

On the assumption, we analyze the pointers of the same level together from
the highest to lowest. The correctness is guaranteed because lower-level pointers
cannot a↵ect pointer values of higher-level pointers during the analysis. For
example, pointer values of x initialized by assignments of the form x = &y may
change by assignments of the form x = y, x = ⇤y, or ⇤p = y (* p may point to
x) during the analysis. The following table presents pointer levels of involved
variables in the assignments that a↵ects pointer values of x.

Assignment Levels
x = y ptl(x) = ptl(y)
x = ⇤y ptl(y) = ptl(x) + 1
⇤p = y ptl(p) = ptl(x) + 1 ^ ptl(y) = ptl(x)

Note that all the variables a↵ect pointer values of x have higher or equal pointer
level compared to x.

Now we describe the level-by-level analysis in secrecy similarly to the basic

scheme. Before beginning, we define the notations �(`)i,j and ⌘(`)i,j in Z for i, j =
1, · · · ,m by

�(`)i,j 6= 0 i↵ An edge x
i

�! &x
j

is derived and ptl(x
i

) = `

⌘(`)i,j 6= 0 i↵ An edge x
i

�! x

j

is derived and ptl(x
i

) = `.

Inputs from Client For the level-by-level analysis, a program owner derives
the following numbers that represent his program P (n is the maximal level of
pointer in the program):

{(�(`)i,j , ⌘
(`)
i,j) | 1 i, j m, 1 ` n} [{(ui,j , vi,j) | 1 i, j m}

where �(`)i,j and ⌘(`)i,j are defined as follows.

�(`)i,j =

⇢
1 if 9x

i

= &x
j

, ptl(x
i

) = `
0 o.w.

⌘(`)i,j =

⇢
1 if (9x

i

= x

j

or i = j), ptl(x
i

) = `
0 o.w.

The definitions of ui,j and vi,j are the same as in the section 3.2. We denote the

encryption of �(`)i,j and ⌘(`)i,j by �̄(`)i,j , ⌘̄
(`)
i,j , respectively.

Server’s Analysis Server’s analysis begins with propagating pointer values of
the maximal level n by applying the Trans rule as much as possible. In other
words, for i, j = 1, · · · ,m, the server repeats the following update m times:

�̄(n)i,j
Pm

k=1 ⌘̄
(n)
i,k · �̄(n)k,j

Next, from the level n� 1 down to 1, the analysis at a level ` is carried out
in the following steps:

Level-by-level Analysis

• User provides 
 
 

• (update) x m times  
 ⇒ (update) ⇒ (update) x m times  
 ⇒ …  
 ⇒ (update) ⇒ (update) x m times

• The multiplicative depth = O(n log m)

10 Woosuk Lee, Hyunsook Hong, Kwangkeun Yi, and Jung Hee Cheon

We assume that type-casting a pointer value to a lower or higher-level pointer
is absent in programs. For example, we do not consider a program that has type-
casting from void* to int** because the pointer level increases from 1 to 2.

On the assumption, we analyze the pointers of the same level together from
the highest to lowest. The correctness is guaranteed because lower-level pointers
cannot a↵ect pointer values of higher-level pointers during the analysis. For
example, pointer values of x initialized by assignments of the form x = &y may
change by assignments of the form x = y, x = ⇤y, or ⇤p = y (* p may point to
x) during the analysis. The following table presents pointer levels of involved
variables in the assignments that a↵ects pointer values of x.

Assignment Levels
x = y ptl(x) = ptl(y)
x = ⇤y ptl(y) = ptl(x) + 1
⇤p = y ptl(p) = ptl(x) + 1 ^ ptl(y) = ptl(x)

Note that all the variables a↵ect pointer values of x have higher or equal pointer
level compared to x.

Now we describe the level-by-level analysis in secrecy similarly to the basic

scheme. Before beginning, we define the notations �(`)i,j and ⌘(`)i,j in Z for i, j =
1, · · · ,m by

�(`)i,j 6= 0 i↵ An edge x
i

�! &x
j

is derived and ptl(x
i

) = `

⌘(`)i,j 6= 0 i↵ An edge x
i

�! x

j

is derived and ptl(x
i

) = `.

Inputs from Client For the level-by-level analysis, a program owner derives
the following numbers that represent his program P (n is the maximal level of
pointer in the program):

{(�(`)i,j , ⌘
(`)
i,j) | 1 i, j m, 1 ` n} [{(ui,j , vi,j) | 1 i, j m}

where �(`)i,j and ⌘(`)i,j are defined as follows.

�(`)i,j =

⇢
1 if 9x

i

= &x
j

, ptl(x
i

) = `
0 o.w.

⌘(`)i,j =

⇢
1 if (9x

i

= x

j

or i = j), ptl(x
i

) = `
0 o.w.

The definitions of ui,j and vi,j are the same as in the section 3.2. We denote the

encryption of �(`)i,j and ⌘(`)i,j by �̄(`)i,j , ⌘̄
(`)
i,j , respectively.

Server’s Analysis Server’s analysis begins with propagating pointer values of
the maximal level n by applying the Trans rule as much as possible. In other
words, for i, j = 1, · · · ,m, the server repeats the following update m times:

�̄(n)i,j
Pm

k=1 ⌘̄
(n)
i,k · �̄(n)k,j

Next, from the level n� 1 down to 1, the analysis at a level ` is carried out
in the following steps:

�(n)i,j

⌘(n�1)
i,j �(n�1)

i,j

�(1)i,j⌘(1)i,j

Analyzing SW Source in Secrecy 13

Note that all the variables a↵ect pointer values of x have higher or equal pointer
level compared to x.

Now we describe the level-by-level analysis in secrecy similarly to the basic

scheme. Before beginning, we define the notations �(`)i,j and ⌘(`)i,j in Z for i, j =
1, · · · ,m by

�(`)i,j 6= 0 i↵ An edge x
i

�! &x
j

is derived and ptl(x
i

) = `

⌘(`)i,j 6= 0 i↵ An edge x
i

�! x

j

is derived and ptl(x
i

) = `.

Inputs from Client For the level-by-level analysis, a program owner derives
the following numbers that represent his program P (n is the maximal level of
pointer in the program):

{(�(`)i,j , ⌘
(`)
ij) | 1 i, j m, 1 ` n} [{(ui,j , vi,j) | 1 i, j m}

where `�i,j and `⌘ij are defined as follows.

�(`)i,j =

⇢

1 if 9x
i

= &x
j

and ptl(x
i

) = `
0 o.w.

⌘(`)i,j =

⇢

1 if (9x
i

= x

j

or i = j) and ptl(x
i

) = `
0 o.w.

The definitions of uij and vij are the same as in the section 5.2. We denote the

encryption of �(`)i,j and ⌘(`)i,j by �̄(`)i,j , ⌘̄
(`)
i,j , respectively.

Server’s Analysis Server’s analysis begins with propagating pointer values of
the maximal level n by applying the Trans rule as much as possible. In other
words, for i, j = 1, · · · ,m, the server repeats the following update m times:

�̄(n)i,j
Pm

k=1

⌘̄(n)i,k · �̄(n)k,j

Next, from the level n� 1 down to 1, the analysis at a level ` is carried out
in the following steps:

1. applying the Load rule

⌘̄(`)i,j ⌘̄(`)i,j +
Pm

k=1

ūi,k · �̄(`+1)

k,j

2. applying the Store rule

⌘̄(`)i,j ⌘̄(`)i,j +
Pm

k=1

v̄j,k · �̄(`+1)

k,i

3. applying the Trans rule: repeating the following update m times

�̄(`)i,j
Pm

k=1

⌘̄(`)i,k · �̄(`)k,j

Through step 1 and 2, edges of the form xi �! xj are derived where either xi

or xj is determined by pointer values of the immediate higher level `+1. In step
3, pointer values of a current level ` are propagated as much as possible.

We need O(n logm) multiplicative depth in total because repeating the above
3 steps n times entails maximally mn homomorphic multiplications on a single
ciphertext.

Ciphertext Packing

• A vector of plaintext can be encrypted into a single
ciphertext

Static Analysis with Set-closure in Secrecy 11

1. applying the Load rule: ⌘̄(`)i,j ⌘̄(`)i,j +
Pm

k=1 ūi,k · �̄(`+1)
k,j

2. applying the Store rule: ⌘̄(`)i,j ⌘̄(`)i,j +
Pm

k=1 v̄j,k · �̄(`+1)
k,i

3. applying the Trans rule: repeating the following update m times

�̄(`)i,j
Pm

k=1 ⌘̄
(`)
i,k · �̄(`)k,j

Through step 1 and 2, edges of the form xi �! xj are derived where either xi

or xj is determined by pointer values of the immediate higher level `+1. In step
3, pointer values of a current level ` are propagated as much as possible.

We need O(n logm) multiplicative depth in total because repeating the above
3 steps n times entails maximally mn homomorphic multiplications on a single
ciphertext.

Output Determination The client receives the updated {�̄(`)i,j | 1 i, j
m, 1 ` n} from the server and recovers a set of points-to relations as follows:

{x
i

�! &x
j

| HE.Decsk(�̄(`)i,j) 6= 0, 1 i, j m, and 1 ` n}

4.4 Ciphertext Packing

Our use of ciphertext packing aims to decrease total ciphertext size by using
fewer ciphertexts than the basic scheme. Thanks to ciphertext packing, a single
ciphertext can hold multiple plaintexts rather than a single value. For given
a vector of plaintexts (µ1, · · · , µm), the BGV cryptosystem allows to obtain a
ciphertext c̄ BGV.Enc(µ1, · · · , µm).

Furthermore, as each ciphertext holds a vector of multiple plaintexts, homo-
morphic operations between such ciphertexts are performed component-wise. For
given ciphetexts c̄1 = BGV.Enc(µ1,1, · · · , µ1,m) and c̄2 = BGV.Enc(µ2,1, · · · , µ2,m),
the homomorphic addition and multiplication in the BGV scheme satisfy the fol-
lowing properties:

BGV.Add(c̄1, c̄2) returns a ciphertext BGV.Enc(µ1,1 + µ2,1, · · · , µ1,m + µ2,m)

BGV.Mult(c̄1, c̄2) returns a ciphertext BGV.Enc(µ1,1 · µ2,1, · · · , µ1,m · µ2,m)

The BGV scheme provides other homomorphic operations such as cyclic rota-
tion. For example, we can perform cyclic rotation of vector by any amount on
ciphertexts (e.g., BGV.Enc(µm, µ1, · · · , µm�1) from BGV.Enc(µ1, µ2, · · · , µm)).
Using the homomorphic addition, multiplication, and other operations, we can
perform the matrix addition, multiplication and transposition operations on en-
crypted matrices.

In this subsection, we describe ciphertext packing and the homomorphic ma-
trix operations in more detail.

Static Analysis with Set-closure in Secrecy 11

1. applying the Load rule: ⌘̄(`)i,j ⌘̄(`)i,j +
Pm

k=1 ūi,k · �̄(`+1)
k,j

2. applying the Store rule: ⌘̄(`)i,j ⌘̄(`)i,j +
Pm

k=1 v̄j,k · �̄(`+1)
k,i

3. applying the Trans rule: repeating the following update m times

�̄(`)i,j
Pm

k=1 ⌘̄
(`)
i,k · �̄(`)k,j

Through step 1 and 2, edges of the form xi �! xj are derived where either xi

or xj is determined by pointer values of the immediate higher level `+1. In step
3, pointer values of a current level ` are propagated as much as possible.

We need O(n logm) multiplicative depth in total because repeating the above
3 steps n times entails maximally mn homomorphic multiplications on a single
ciphertext.

Output Determination The client receives the updated {�̄(`)i,j | 1 i, j
m, 1 ` n} from the server and recovers a set of points-to relations as follows:

{x
i

�! &x
j

| HE.Decsk(�̄(`)i,j) 6= 0, 1 i, j m, and 1 ` n}

4.4 Ciphertext Packing

Our use of ciphertext packing aims to decrease total ciphertext size by using
fewer ciphertexts than the basic scheme. Thanks to ciphertext packing, a single
ciphertext can hold multiple plaintexts rather than a single value. For given
a vector of plaintexts (µ1, · · · , µm), the BGV cryptosystem allows to obtain a
ciphertext c̄ BGV.Enc(µ1, · · · , µm).

Furthermore, as each ciphertext holds a vector of multiple plaintexts, homo-
morphic operations between such ciphertexts are performed component-wise. For
given ciphetexts c̄1 = BGV.Enc(µ1,1, · · · , µ1,m) and c̄2 = BGV.Enc(µ2,1, · · · , µ2,m),
the homomorphic addition and multiplication in the BGV scheme satisfy the fol-
lowing properties:

BGV.Add(c̄1, c̄2) returns a ciphertext BGV.Enc(µ1,1 + µ2,1, · · · , µ1,m + µ2,m)

BGV.Mult(c̄1, c̄2) returns a ciphertext BGV.Enc(µ1,1 · µ2,1, · · · , µ1,m · µ2,m)

The BGV scheme provides other homomorphic operations such as cyclic rota-
tion. For example, we can perform cyclic rotation of vector by any amount on
ciphertexts (e.g., BGV.Enc(µm, µ1, · · · , µm�1) from BGV.Enc(µ1, µ2, · · · , µm)).
Using the homomorphic addition, multiplication, and other operations, we can
perform the matrix addition, multiplication and transposition operations on en-
crypted matrices.

In this subsection, we describe ciphertext packing and the homomorphic ma-
trix operations in more detail.

Static Analysis with Set-closure in Secrecy 11

1. applying the Load rule: ⌘̄(`)i,j ⌘̄(`)i,j +
Pm

k=1 ūi,k · �̄(`+1)
k,j

2. applying the Store rule: ⌘̄(`)i,j ⌘̄(`)i,j +
Pm

k=1 v̄j,k · �̄(`+1)
k,i

3. applying the Trans rule: repeating the following update m times

�̄(`)i,j
Pm

k=1 ⌘̄
(`)
i,k · �̄(`)k,j

Through step 1 and 2, edges of the form xi �! xj are derived where either xi

or xj is determined by pointer values of the immediate higher level `+1. In step
3, pointer values of a current level ` are propagated as much as possible.

We need O(n logm) multiplicative depth in total because repeating the above
3 steps n times entails maximally mn homomorphic multiplications on a single
ciphertext.

Output Determination The client receives the updated {�̄(`)i,j | 1 i, j
m, 1 ` n} from the server and recovers a set of points-to relations as follows:

{x
i

�! &x
j

| HE.Decsk(�̄(`)i,j) 6= 0, 1 i, j m, and 1 ` n}

4.4 Ciphertext Packing

Our use of ciphertext packing aims to decrease total ciphertext size by using
fewer ciphertexts than the basic scheme. Thanks to ciphertext packing, a single
ciphertext can hold multiple plaintexts rather than a single value. For given
a vector of plaintexts (µ1, · · · , µm), the BGV cryptosystem allows to obtain a
ciphertext c̄ BGV.Enc(µ1, · · · , µm).

Furthermore, as each ciphertext holds a vector of multiple plaintexts, homo-
morphic operations between such ciphertexts are performed component-wise. For
given ciphetexts c̄1 = BGV.Enc(µ1,1, · · · , µ1,m) and c̄2 = BGV.Enc(µ2,1, · · · , µ2,m),
the homomorphic addition and multiplication in the BGV scheme satisfy the fol-
lowing properties:

BGV.Add(c̄1, c̄2) returns a ciphertext BGV.Enc(µ1,1 + µ2,1, · · · , µ1,m + µ2,m)

BGV.Mult(c̄1, c̄2) returns a ciphertext BGV.Enc(µ1,1 · µ2,1, · · · , µ1,m · µ2,m)

The BGV scheme provides other homomorphic operations such as cyclic rota-
tion. For example, we can perform cyclic rotation of vector by any amount on
ciphertexts (e.g., BGV.Enc(µm, µ1, · · · , µm�1) from BGV.Enc(µ1, µ2, · · · , µm)).
Using the homomorphic addition, multiplication, and other operations, we can
perform the matrix addition, multiplication and transposition operations on en-
crypted matrices.

In this subsection, we describe ciphertext packing and the homomorphic ma-
trix operations in more detail.

⌘

Static Analysis with Set-closure in Secrecy 11

1. applying the Load rule: ⌘̄(`)i,j ⌘̄(`)i,j +
Pm

k=1 ūi,k · �̄(`+1)
k,j

2. applying the Store rule: ⌘̄(`)i,j ⌘̄(`)i,j +
Pm

k=1 v̄j,k · �̄(`+1)
k,i

3. applying the Trans rule: repeating the following update m times

�̄(`)i,j
Pm

k=1 ⌘̄
(`)
i,k · �̄(`)k,j

Through step 1 and 2, edges of the form xi �! xj are derived where either xi

or xj is determined by pointer values of the immediate higher level `+1. In step
3, pointer values of a current level ` are propagated as much as possible.

We need O(n logm) multiplicative depth in total because repeating the above
3 steps n times entails maximally mn homomorphic multiplications on a single
ciphertext.

Output Determination The client receives the updated {�̄(`)i,j | 1 i, j
m, 1 ` n} from the server and recovers a set of points-to relations as follows:

{x
i

�! &x
j

| HE.Decsk(�̄(`)i,j) 6= 0, 1 i, j m, and 1 ` n}

4.4 Ciphertext Packing

Our use of ciphertext packing aims to decrease total ciphertext size by using
fewer ciphertexts than the basic scheme. Thanks to ciphertext packing, a single
ciphertext can hold multiple plaintexts rather than a single value. For given
a vector of plaintexts (µ1, · · · , µm), the BGV cryptosystem allows to obtain a
ciphertext c̄ BGV.Enc(µ1, · · · , µm).

Furthermore, as each ciphertext holds a vector of multiple plaintexts, homo-
morphic operations between such ciphertexts are performed component-wise. For
given ciphetexts c̄1 = BGV.Enc(µ1,1, · · · , µ1,m) and c̄2 = BGV.Enc(µ2,1, · · · , µ2,m),
the homomorphic addition and multiplication in the BGV scheme satisfy the fol-
lowing properties:

BGV.Add(c̄1, c̄2) returns a ciphertext BGV.Enc(µ1,1 + µ2,1, · · · , µ1,m + µ2,m)

BGV.Mult(c̄1, c̄2) returns a ciphertext BGV.Enc(µ1,1 · µ2,1, · · · , µ1,m · µ2,m)

The BGV scheme provides other homomorphic operations such as cyclic rota-
tion. For example, we can perform cyclic rotation of vector by any amount on
ciphertexts (e.g., BGV.Enc(µm, µ1, · · · , µm�1) from BGV.Enc(µ1, µ2, · · · , µm)).
Using the homomorphic addition, multiplication, and other operations, we can
perform the matrix addition, multiplication and transposition operations on en-
crypted matrices.

In this subsection, we describe ciphertext packing and the homomorphic ma-
trix operations in more detail.

Static Analysis with Set-closure in Secrecy 11

1. applying the Load rule: ⌘̄(`)i,j ⌘̄(`)i,j +
Pm

k=1 ūi,k · �̄(`+1)
k,j

2. applying the Store rule: ⌘̄(`)i,j ⌘̄(`)i,j +
Pm

k=1 v̄j,k · �̄(`+1)
k,i

3. applying the Trans rule: repeating the following update m times

�̄(`)i,j
Pm

k=1 ⌘̄
(`)
i,k · �̄(`)k,j

Through step 1 and 2, edges of the form xi �! xj are derived where either xi

or xj is determined by pointer values of the immediate higher level `+1. In step
3, pointer values of a current level ` are propagated as much as possible.

We need O(n logm) multiplicative depth in total because repeating the above
3 steps n times entails maximally mn homomorphic multiplications on a single
ciphertext.

Output Determination The client receives the updated {�̄(`)i,j | 1 i, j
m, 1 ` n} from the server and recovers a set of points-to relations as follows:

{x
i

�! &x
j

| HE.Decsk(�̄(`)i,j) 6= 0, 1 i, j m, and 1 ` n}

4.4 Ciphertext Packing

Our use of ciphertext packing aims to decrease total ciphertext size by using
fewer ciphertexts than the basic scheme. Thanks to ciphertext packing, a single
ciphertext can hold multiple plaintexts rather than a single value. For given
a vector of plaintexts (µ1, · · · , µm), the BGV cryptosystem allows to obtain a
ciphertext c̄ BGV.Enc(µ1, · · · , µm).

Furthermore, as each ciphertext holds a vector of multiple plaintexts, homo-
morphic operations between such ciphertexts are performed component-wise. For
given ciphetexts c̄1 = BGV.Enc(µ1,1, · · · , µ1,m) and c̄2 = BGV.Enc(µ2,1, · · · , µ2,m),
the homomorphic addition and multiplication in the BGV scheme satisfy the fol-
lowing properties:

BGV.Add(c̄1, c̄2) returns a ciphertext BGV.Enc(µ1,1 + µ2,1, · · · , µ1,m + µ2,m)

BGV.Mult(c̄1, c̄2) returns a ciphertext BGV.Enc(µ1,1 · µ2,1, · · · , µ1,m · µ2,m)

The BGV scheme provides other homomorphic operations such as cyclic rota-
tion. For example, we can perform cyclic rotation of vector by any amount on
ciphertexts (e.g., BGV.Enc(µm, µ1, · · · , µm�1) from BGV.Enc(µ1, µ2, · · · , µm)).
Using the homomorphic addition, multiplication, and other operations, we can
perform the matrix addition, multiplication and transposition operations on en-
crypted matrices.

In this subsection, we describe ciphertext packing and the homomorphic ma-
trix operations in more detail.

Static Analysis with Set-closure in Secrecy 11

1. applying the Load rule: ⌘̄(`)i,j ⌘̄(`)i,j +
Pm

k=1 ūi,k · �̄(`+1)
k,j

2. applying the Store rule: ⌘̄(`)i,j ⌘̄(`)i,j +
Pm

k=1 v̄j,k · �̄(`+1)
k,i

3. applying the Trans rule: repeating the following update m times

�̄(`)i,j
Pm

k=1 ⌘̄
(`)
i,k · �̄(`)k,j

Through step 1 and 2, edges of the form xi �! xj are derived where either xi

or xj is determined by pointer values of the immediate higher level `+1. In step
3, pointer values of a current level ` are propagated as much as possible.

We need O(n logm) multiplicative depth in total because repeating the above
3 steps n times entails maximally mn homomorphic multiplications on a single
ciphertext.

Output Determination The client receives the updated {�̄(`)i,j | 1 i, j
m, 1 ` n} from the server and recovers a set of points-to relations as follows:

{x
i

�! &x
j

| HE.Decsk(�̄(`)i,j) 6= 0, 1 i, j m, and 1 ` n}

4.4 Ciphertext Packing

Our use of ciphertext packing aims to decrease total ciphertext size by using
fewer ciphertexts than the basic scheme. Thanks to ciphertext packing, a single
ciphertext can hold multiple plaintexts rather than a single value. For given
a vector of plaintexts (µ1, · · · , µm), the BGV cryptosystem allows to obtain a
ciphertext c̄ BGV.Enc(µ1, · · · , µm).

Furthermore, as each ciphertext holds a vector of multiple plaintexts, homo-
morphic operations between such ciphertexts are performed component-wise. For
given ciphetexts c̄1 = BGV.Enc(µ1,1, · · · , µ1,m) and c̄2 = BGV.Enc(µ2,1, · · · , µ2,m),
the homomorphic addition and multiplication in the BGV scheme satisfy the fol-
lowing properties:

BGV.Add(c̄1, c̄2) returns a ciphertext BGV.Enc(µ1,1 + µ2,1, · · · , µ1,m + µ2,m)

BGV.Mult(c̄1, c̄2) returns a ciphertext BGV.Enc(µ1,1 · µ2,1, · · · , µ1,m · µ2,m)

The BGV scheme provides other homomorphic operations such as cyclic rota-
tion. For example, we can perform cyclic rotation of vector by any amount on
ciphertexts (e.g., BGV.Enc(µm, µ1, · · · , µm�1) from BGV.Enc(µ1, µ2, · · · , µm)).
Using the homomorphic addition, multiplication, and other operations, we can
perform the matrix addition, multiplication and transposition operations on en-
crypted matrices.

In this subsection, we describe ciphertext packing and the homomorphic ma-
trix operations in more detail.

⌘

• We should use the BGV scheme.

Homomorphic Matrix
Multiplication

• The pointer analysis can be represented in matrix form.

• We encrypt a matrix in row-order  
 
 
 
similarly,

�̄
(`)
i BGV.Enc(�(`)i,1 , · · · , �

(`)
i,m)

�̄` h�̄
(`)
i , · · · , �̄(`)m i

12 Woosuk Lee, Hyunsook Hong, Kwangkeun Yi, and Jung Hee Cheon

Rule Integer form Matrix form

Trans �(`)i,j
Pm

k=1 ⌘
(`)
i,k · �(`)k,j �` H` ·�`

Load ⌘(`)
i,j ⌘(`)

i,j +
Pm

k=1 ui,k · �(`+1)
k,j H` H` + U ·�`+1

Store ⌘(`)
i,j ⌘(`)

i,j +
Pm

k=1 vj,k · �(`+1)
k,i H` H` + (V ·�`+1)

T

Table 3: Circuit expression of the level-by-level analysis

Principle of Ciphertext Packing We begin with some notations. For an in-

teger q, Zq
def

= [�q/2, q/2)\Z and x mod q denotes a number in [�q/2, q/2)\Z
which is equivalent to x modulo q. Recall that the message space of the BGV
cryptosystem is Rp = Z[X]/ (p,�(X)) for a prime p and an irreducible poly-
nomial �(X). We identify the polynomial ring Rp with {a0 + a1X + · · · +
adeg��1Xdeg��1 | ai 2 Zp and 0 i < deg�}.

In the basic approach, although the message space of the BGV scheme is
the polynomial ring Rp, we have used only constant polynomials (i.e., numbers)
for plaintexts. Thus, if a vector of plaintexts is represented as a single non-
constant polynomial, a single ciphertext can hold multiple plaintexts rather than
a single value. Therefore we can save the total memory space by using fewer
ciphertexts than the basic scheme. Suppose the factorization of �(X) modulo p is
�(X) =

Qm
i=1 Fi(X) mod p where each Fi is an irreducible polynomial in Zp[X].

Then a polynomial µ(X) 2 Rp can be viewed as a vector of m di↵erent small
polynomials, (µ1(X), · · · , µm(X)) such that µi(X) = (µ(X) modulo Fi(X)) for
i = 1, · · · ,m.

From this observation, we can encrypt a vector µ = (µ1, · · · , µm) of plain-
texts in

Qm
i=1 Zp into a single ciphertext by the following transitions:

Zp ⇥ · · ·⇥ Zp �!
Qm

i=1 Zp[X]/ (Fi(X)) �! Zp[X]/ (�(X)) �! Rq

(µ1, · · · , µm)
id7�! (µ1(X), · · · , µm(X))

CRT7�! µ(X)
BGV.Enc7�! c̄

First, we view a component µi in a vector µ = (µ1, · · · , µm) as a contant poly-
nomial µi 2 Zp[X]/ (Fi(X)) for i = 1, · · · ,m. Then, we can compute the unique
polynomial µ(X) 2 Rp satisfying µ(X) = µi mod (p, Fi(X)) for i = 1, · · · ,m by
the Chinese Remainder Theorem (CRT) of polynomials. Finally, to encrypt a
vector µ = (µ1, · · · , µm) in

Qm
i=1 Zp, we encrypt the polynomial µ(X) 2 Rp into

a ciphertext c̄ which is denoted by BGV.Enc (µ1, · · · , µm) . For more details to
the ciphertext packing, we suggest that readers see the paper [22].

Homomorphic Matrix Operations Applying the resolution rules in the level-
by-level analysis in the section 3.5 can be re-written in a matrix form as shown in

Table 3. In Table 3, �` = [�(`)i,j], H` = [⌘(`)i,j], U = [ui,j], and V = [vi,j] are m⇥m

integer matrices. Let the i-th row of �` and H` be �
(`)
i and ⌘(`)

i respectively. And

we denote the encryptions as �̄
(`)
i = BGV.Enc(�(`)i) and ⌘̄(`)

i = BGV.Enc(⌘(`)
i).

We follow the methods in [16] to perform multiplication between encrypted
matrices. We use the Replicate homomorphic operation supported by the BGV
scheme [16]. For a given ciphertext c̄ = BGV.Enc(µ1, · · · , µm), the operation

Analyzing SW Source in Secrecy 15

Step Integer form Matrix form

Propagation �(`)i,j
Pm

k=1

⌘(`)
i,k · �(`)k,j �` H` ·�`

Edge addition (Load) ⌘(`)
i,j ⌘(`)

i,j +
Pm

k=1

ui,k · �(`+1)

k,j H` H` + U ·�`+1

Edge addition (Store) ⌘(`)
i,j ⌘(`)

i,j +
Pm

k=1

vj,k · �(`+1)

k,i H` H` + (V ·�`+1

)T

Rp can be viewed as a vector ofm di↵erent small polynomials, (µ
1

(X), · · · , µm(X))
such that µi(X) = (µ(X) modulo Fi(X)) for i = 1, · · · ,m.

From this observation, we can encrypt a vector µ = (µ
1

, · · · , µm) of plain-
texts in

Qm
i=1

Zp into a single ciphertext by the following transitions:

Zp ⇥ · · ·⇥ Zp �!
Qm

i=1

Zp[X]/ (Fi(X)) �! Zp[X]/ (�(X)) �! Rq

(µ
1

, · · · , µm)
id7�! (µ

1

(X), · · · , µm(X))
CRT7�! µ(X)

BGV.Enc7�! c̄

First, we view a component µi in a vector µ = (µ
1

, · · · , µm) as a contant poly-
nomial µi 2 Zp[X]/ (Fi(X)) for i = 1, · · · ,m. Then, we can compute the unique
polynomial µ(X) 2 Rp satisfying µ(X) = µi mod (p, Fi(X)) for i = 1, · · · ,m by
the Chinese Remainder Theorem (CRT) of polynomials. Finally, to encrypt a
vector µ = (µ

1

, · · · , µm) in
Qm

i=1

Zp, we encrypt the polynomial µ(X) 2 Rp into
a ciphertext c̄ which is denoted by BGV.Enc (µ

1

, · · · , µm) . For more details to
the ciphertext packing, we suggest that readers see the paper [20].

Homomorphic Matrix Operations Applying the resolution rules in the level-
by-level analysis in the section 4.3 can be re-written in a matrix form as shown

in Table ??. In Table ??, �` = [�(`)i,j], H` = [⌘(`)i,j], U = [ui,j], and V = [vi,j]

are m ⇥ m integer matrices. Let the i-th row of �` and H` be �(`)i and ⌘(`)
i

respectively. And we denote the encryptions as �̄
(`)
i = BGV.Enc(�(`)i) and ⌘̄(`)

i =

BGV.Enc(⌘(`)
i).

We follow the methods in [15] to perform multiplication between encrypted
matrices. We use the Replicate homomorphic operation supported by the BGV
scheme [15]. For a given ciphertext c̄ = BGV.Enc(µ

1

, · · · , µm), the operation
Replicate(c̄, i) generates a ciphertext BGV.Enc(µi, · · · , µi) for i = 1, · · · ,m. Us-
ing the operation, we can generate an encryption of the i-th row of (H` ·�`) as
follows:

BGV.Mult
⇣

Replicate(⌘̄(`)
i , 1), �̄

(`)
1

⌘

+ · · · + BGV.Mult
⇣

Replicate(⌘̄(`)
i ,m), �̄

(`)
m

⌘

.

Note that this method does not a↵ect the asymptotic notation of the multi-
plicative depth since the operation Replicate entails only a single multiplication.

To compute a transpose of an encrypted matrix, we use the masking and
cyclic rotation techniques described in [15]. Algorithms for the homomorphic
operations on encrypted matrices are described in Fig. 4 and 5 in Appendix B.

Homomorphic Matrix
Multiplication

• The i-th row of is

• Using the Replication operator supported by the
BGV scheme  
 
where

• we compute the encrypted i-th row of

Homomorphic Encryption and Its Application

Secure Program Static Analysis

Ciphertext Packing

The vector of plaintext is encrypted into a ciphetext.

Pointer analysis can be represented in matrix form.
Integer form Matrix form

Propagation �(`)i,k ← �(`)i,k +∑j≠i,k ⌘(`)i,j ⋅ �(`)j,k �` ← H` ⋅�`

Edge addition I ⌘(`)i,k ← ⌘(`)i,k +∑m
j≠i,k ui,j ⋅ �(`+1)j,k H` ← H` +U ⋅�`+1

Edge addition II ⌘(`)k,j ← ⌘(`)k,j +∑m
i≠k,j vi,j ⋅ �(`+1)i,k H` ← H` +�T

`+1 ⋅V
The i-th row of H ⋅� = (∑j ⌘i,j ⋅ �j,k) is

(∑j ⌘i,j�j,1,�,∑j ⌘i,j�j,m) = ∑j ⌘i,j ⋅ (�j,1,�, �j,m)
For a ctxt c̄ = Enc(µ1,�, µm), Replicate(c̄, i)→ Enc(µi ,�, µi).
For given ctxts ⌘̄i = Enc(⌘i,1,�,⌘i,m), �̄j = Enc(�j,1,�, �j,m) (1 ≤ j ≤ m), we
can compute the encrypted i-th row of H ⋅� as follows:

HE.Mult �Replicate(⌘̄i ,1), �̄1� + � + HE.Mult �Replicate(⌘̄i ,m), �̄m� .
29 / 1

Replicate(c̄, i) ⌘ BGV.Enc(µi, · · · , µi)

c̄ = BGV.Enc(µ1, · · · , µn)

Analyzing SW Source in Secrecy 15

Rule Integer form Matrix form

Trans �(`)i,j
Pm

k=1

⌘(`)
i,k · �(`)k,j �` H` ·�`

Load ⌘(`)
i,j ⌘(`)

i,j +
Pm

k=1

ui,k · �(`+1)

k,j H` H` + U ·�`+1

Store ⌘(`)
i,j ⌘(`)

i,j +
Pm

k=1

vj,k · �(`+1)

k,i H` H` + (V ·�`+1

)T

Table 4: Circuit expression of the level-by-level analysis

Rp can be viewed as a vector ofm di↵erent small polynomials, (µ
1

(X), · · · , µm(X))
such that µi(X) = (µ(X) modulo Fi(X)) for i = 1, · · · ,m.

From this observation, we can encrypt a vector µ = (µ
1

, · · · , µm) of plain-
texts in

Qm
i=1

Zp into a single ciphertext by the following transitions:

Zp ⇥ · · ·⇥ Zp �!
Qm

i=1

Zp[X]/ (Fi(X)) �! Zp[X]/ (�(X)) �! Rq

(µ
1

, · · · , µm)
id7�! (µ

1

(X), · · · , µm(X))
CRT7�! µ(X)

BGV.Enc7�! c̄

First, we view a component µi in a vector µ = (µ
1

, · · · , µm) as a contant poly-
nomial µi 2 Zp[X]/ (Fi(X)) for i = 1, · · · ,m. Then, we can compute the unique
polynomial µ(X) 2 Rp satisfying µ(X) = µi mod (p, Fi(X)) for i = 1, · · · ,m by
the Chinese Remainder Theorem (CRT) of polynomials. Finally, to encrypt a
vector µ = (µ

1

, · · · , µm) in
Qm

i=1

Zp, we encrypt the polynomial µ(X) 2 Rp into
a ciphertext c̄ which is denoted by BGV.Enc (µ

1

, · · · , µm) . For more details to
the ciphertext packing, we suggest that readers see the paper [20].

Homomorphic Matrix Operations Applying the resolution rules in the level-
by-level analysis in the section 4.3 can be re-written in a matrix form as shown in

Table 5. In Table 5, �` = [�(`)i,j], H` = [⌘(`)i,j], U = [ui,j], and V = [vi,j] are m⇥m

integer matrices. Let the i-th row of �` and H` be �
(`)
i and ⌘(`)

i respectively. And

we denote the encryptions as �̄
(`)
i = BGV.Enc(�(`)i) and ⌘̄(`)

i = BGV.Enc(⌘(`)
i).

We follow the methods in [15] to perform multiplication between encrypted
matrices. We use the Replicate homomorphic operation supported by the BGV
scheme [15]. For a given ciphertext c̄ = BGV.Enc(µ

1

, · · · , µm), the operation
Replicate(c̄, i) generates a ciphertext BGV.Enc(µi, · · · , µi) for i = 1, · · · ,m. Us-
ing the operation, we can generate an encryption of the i-th row of (H` ·�`) as
follows:

BGV.Mult
�

Replicate(⌘̄i, 1), �̄1
�

+ · · · + BGV.Mult
�

Replicate(⌘̄i,m), �̄m
�

.

Note that this method does not a↵ect the asymptotic notation of the multiplica-
tive depth since the operation Replicate entails only a single multiplication.

To compute a transpose of an encrypted matrix, we use the masking and
cyclic rotation techniques described in [15]. Algorithms for the homomorphic
operations on encrypted matrices are described in Fig. 4 and 5 in Appendix B.

H ·�

H ·�

Randomizing the Messages

• Let be message space for a prime

• During operations 
 may accidentally become  
when it overflows

• In the following computation  
 
the prob. that is less than  
where are randomly chosen.

Analyzing SW Source in Secrecy 15

Rule Integer form Matrix form

Trans �(`)i,j
Pm

k=1

⌘(`)
i,k · �(`)k,j �` H` ·�`

Load ⌘(`)
i,j ⌘(`)

i,j +
Pm

k=1

ui,k · �(`+1)

k,j H` H` + U ·�`+1

Store ⌘(`)
i,j ⌘(`)

i,j +
Pm

k=1

vj,k · �(`+1)

k,i H` H` + (V ·�`+1

)T

Table 4: Circuit expression of the level-by-level analysis

Rp can be viewed as a vector ofm di↵erent small polynomials, (µ
1

(X), · · · , µm(X))
such that µi(X) = (µ(X) modulo Fi(X)) for i = 1, · · · ,m.

From this observation, we can encrypt a vector µ = (µ
1

, · · · , µm) of plain-
texts in

Qm
i=1

Zp into a single ciphertext by the following transitions:

Zp ⇥ · · ·⇥ Zp �!
Qm

i=1

Zp[X]/ (Fi(X)) �! Zp[X]/ (�(X)) �! Rq

(µ
1

, · · · , µm)
id7�! (µ

1

(X), · · · , µm(X))
CRT7�! µ(X)

BGV.Enc7�! c̄

First, we view a component µi in a vector µ = (µ
1

, · · · , µm) as a contant poly-
nomial µi 2 Zp[X]/ (Fi(X)) for i = 1, · · · ,m. Then, we can compute the unique
polynomial µ(X) 2 Rp satisfying µ(X) = µi mod (p, Fi(X)) for i = 1, · · · ,m by
the Chinese Remainder Theorem (CRT) of polynomials. Finally, to encrypt a
vector µ = (µ

1

, · · · , µm) in
Qm

i=1

Zp, we encrypt the polynomial µ(X) 2 Rp into
a ciphertext c̄ which is denoted by BGV.Enc (µ

1

, · · · , µm) . For more details to
the ciphertext packing, we suggest that readers see the paper [20].

Homomorphic Matrix Operations Applying the resolution rules in the level-
by-level analysis in the section 4.3 can be re-written in a matrix form as shown in

Table 4. In Table 4, �` = [�(`)i,j], H` = [⌘(`)i,j], U = [ui,j], and V = [vi,j] are m⇥m

integer matrices. Let the i-th row of �` and H` be �
(`)
i and ⌘(`)

i respectively. And

we denote the encryptions as �̄
(`)
i = BGV.Enc(�(`)i) and ⌘̄(`)

i = BGV.Enc(⌘(`)
i).

We follow the methods in [15] to perform multiplication between encrypted
matrices. We use the Replicate homomorphic operation supported by the BGV
scheme [15]. For a given ciphertext c̄ = BGV.Enc(µ

1

, · · · , µm), the operation
Replicate(c̄, i) generates a ciphertext BGV.Enc(µi, · · · , µi) for i = 1, · · · ,m. Us-
ing the operation, we can generate an encryption of the i-th row of (H` ·�`) as
follows:

BGV.Mult
⇣

Replicate(⌘̄(`)
i , 1), �̄

(`)
1

⌘

+ · · · + BGV.Mult
⇣

Replicate(⌘̄(`)
i ,m), �̄

(`)
m

⌘

.

(H�)i,j = ⌘i,1 · �1,j + · · ·+ ⌘i,m · �m,j

Note that this method does not a↵ect the asymptotic notation of the multiplica-
tive depth since the operation Replicate entails only a single multiplication.

To compute a transpose of an encrypted matrix, we use the masking and
cyclic rotation techniques described in [15]. Algorithms for the homomorphic
operations on encrypted matrices are described in Fig. 4 and 5 in Appendix B.

(H�)i,j

Analyzing SW Source in Secrecy 15

Rule Integer form Matrix form

Trans �(`)i,j
Pm

k=1

⌘(`)
i,k · �(`)k,j �` H` ·�`

Load ⌘(`)
i,j ⌘(`)

i,j +
Pm

k=1

ui,k · �(`+1)

k,j H` H` + U ·�`+1

Store ⌘(`)
i,j ⌘(`)

i,j +
Pm

k=1

vj,k · �(`+1)

k,i H` H` + (V ·�`+1

)T

Table 4: Circuit expression of the level-by-level analysis

Rp can be viewed as a vector ofm di↵erent small polynomials, (µ
1

(X), · · · , µm(X))
such that µi(X) = (µ(X) modulo Fi(X)) for i = 1, · · · ,m.

From this observation, we can encrypt a vector µ = (µ
1

, · · · , µm) of plain-
texts in

Qm
i=1

Zp into a single ciphertext by the following transitions:

Zp ⇥ · · ·⇥ Zp �!
Qm

i=1

Zp[X]/ (Fi(X)) �! Zp[X]/ (�(X)) �! Rq

(µ
1

, · · · , µm)
id7�! (µ

1

(X), · · · , µm(X))
CRT7�! µ(X)

BGV.Enc7�! c̄

First, we view a component µi in a vector µ = (µ
1

, · · · , µm) as a contant poly-
nomial µi 2 Zp[X]/ (Fi(X)) for i = 1, · · · ,m. Then, we can compute the unique
polynomial µ(X) 2 Rp satisfying µ(X) = µi mod (p, Fi(X)) for i = 1, · · · ,m by
the Chinese Remainder Theorem (CRT) of polynomials. Finally, to encrypt a
vector µ = (µ

1

, · · · , µm) in
Qm

i=1

Zp, we encrypt the polynomial µ(X) 2 Rp into
a ciphertext c̄ which is denoted by BGV.Enc (µ

1

, · · · , µm) . For more details to
the ciphertext packing, we suggest that readers see the paper [20].

Homomorphic Matrix Operations Applying the resolution rules in the level-
by-level analysis in the section 4.3 can be re-written in a matrix form as shown in

Table 4. In Table 4, �` = [�(`)i,j], H` = [⌘(`)i,j], U = [ui,j], and V = [vi,j] are m⇥m

integer matrices. Let the i-th row of �` and H` be �
(`)
i and ⌘(`)

i respectively. And

we denote the encryptions as �̄
(`)
i = BGV.Enc(�(`)i) and ⌘̄(`)

i = BGV.Enc(⌘(`)
i).

We follow the methods in [15] to perform multiplication between encrypted
matrices. We use the Replicate homomorphic operation supported by the BGV
scheme [15]. For a given ciphertext c̄ = BGV.Enc(µ

1

, · · · , µm), the operation
Replicate(c̄, i) generates a ciphertext BGV.Enc(µi, · · · , µi) for i = 1, · · · ,m. Us-
ing the operation, we can generate an encryption of the i-th row of (H` ·�`) as
follows:

BGV.Mult
⇣

Replicate(⌘̄(`)
i , 1), �̄

(`)
1

⌘

+ · · · + BGV.Mult
⇣

Replicate(⌘̄(`)
i ,m), �̄

(`)
m

⌘

.

(H�)0i,j = r
1

· ⌘i,1 · �1,j + · · ·+ rm · ⌘i,m · �m,j

Note that this method does not a↵ect the asymptotic notation of the multiplica-
tive depth since the operation Replicate entails only a single multiplication.

To compute a transpose of an encrypted matrix, we use the masking and
cyclic rotation techniques described in [15]. Algorithms for the homomorphic
operations on encrypted matrices are described in Fig. 4 and 5 in Appendix B.

(H�)

0
i,j ⌘ 0 mod p

1

p� 1

r1, · · · , rm

Zt t

kt(= 0 in Zt)

Randomizing the Messages

• Since we need matrix
multiplications

• the probability of correct results is greater than

• e.g. the success prob. is about 95%  
when n=2, m=1000, t=503

n(dlogme+ 3)� 2

(1� 1

t�1

)n(dlogme+3)

The Pointer Analysis in Secrecy

Homomorphic Encryption and Its Application

Secure Program Static Analysis

Improved pointer analysis in secrecy

User’s setting: For i , j = 1, . . . ,m
�(`)i,j ← 1 if (∃x

i

= &x

j

) ∧ (ptl(xi) = `)
⌘(`)i,j ← 1 if (∃x

i

= x
j

) ∧ (ptl(xi) = `)
ui,j ← 1 if ∃x

i

= ∗x
j

vi,j ← 1 if ∃∗x
i

= x
j

Inputs from user: {�̄` = Enc[�(`)i,j], H̄` = Enc[⌘(`)i,j] � 1 ≤ ` ≤ n},
Ū = Enc[ui,j], V̄ = Enc[vi,j]

Server computation:

Propagation �̄n ← �̄n ⋅ H̄m
n

For ` = n − 1 down to 1
Edge addition H̄` ← H̄` + Ū ⋅ �̄`+1 + �̄T

`+1 ⋅V
Propagation �̄` ← �̄` ⋅ H̄m

`

Output determination: The user receives {�(`)i,j � 1 ≤ i , j ≤ m,1 ≤ ` ≤ n} and derives
points-to sets of a variable of interest, namely xj as follows:

pt(x
i

) = {x
j

� �(`)i,j ≠ 0 ∧ ptl(xi) = `}
31 / 42

