
70

Inductive Synthesis of Structurally Recursive Functional

Programs from Non-recursive Expressions

WOOSUK LEE∗, Hanyang University, South Korea

HANGYEOL CHO, Hanyang University, South Korea

We present a novel approach to synthesizing recursive functional programs from input-output examples.
Synthesizing a recursive function is challenging because recursive subexpressions should be constructed while
the target function has not been fully defined yet. We address this challenge by using a new technique we
call block-based pruning. A block refers to a recursion- and conditional-free expression (i.e., straight-line
code) that yields an output from a particular input. We first synthesize as many blocks as possible for each
input-output example, and then we explore the space of recursive programs, pruning candidates that are
inconsistent with the blocks. Our method is based on an efficient version space learning, thereby effectively
dealing with a possibly enormous number of blocks. In addition, we present a method that uses sampled
input-output behaviors of library functions to enable a goal-directed search for a recursive program using the
library. We have implemented our approach in a system called Trio and evaluated it on synthesis tasks from
prior work and on new tasks. Our experiments show that Trio outperforms prior work by synthesizing a
solution to 98% of the benchmarks in our benchmark suite.

CCS Concepts: • Software and its engineering → Programming by example; Automatic program-

ming.

Additional Key Words and Phrases: Programming by Example, Recursive Functional Programs, Synthesis

ACM Reference Format:

Woosuk Lee and Hangyeol Cho. 2023. Inductive Synthesis of Structurally Recursive Functional Programs
from Non-recursive Expressions. Proc. ACM Program. Lang. 7, POPL, Article 70 (January 2023), 31 pages.
https://doi.org/10.1145/3571263

1 INTRODUCTION

Recent years have witnessed a surge of interest in recursive functional program synthesis [Albargh-
outhi et al. 2013; Farzan and Nicolet 2021; Feser et al. 2015; Kneuss et al. 2013; Lubin et al. 2020;
Miltner et al. 2022; Osera and Zdancewic 2015; Polikarpova et al. 2016]. In particular, because input-
output examples are readily available, inductive synthesis of recursive functional programs has
gained a lot of attention, witnessing significant strides. Inductive synthesis problems are typically
expressed as a combination of algebraic data types, a library of external operators over the data
types, and input-output examples that should be satisfied by the target function to be synthesized.

Despite recent advances, synthesizing recursive functional programs from input-output examples
is still challenging, mainly due to the following two factors.

∗Corresponding author.

Authors’ addresses: Woosuk Lee, Hanyang University, Dept. of Computer Science & Engineering, South Korea, woosuk@
hanyang.ac.kr; Hangyeol Cho, Hanyang University, Dept. of Computer Science & Engineering (major in Bio Artificial
Intelligence), South Korea, pigon8@hanyang.ac.kr.

© 2023 Copyright held by the owner/author(s).
2475-1421/2023/1-ART70
https://doi.org/10.1145/3571263

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3571263
https://doi.org/10.1145/3571263
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3571263&domain=pdf&date_stamp=2023-01-11

70:2 Woosuk Lee and Hangyeol Cho

• Recursive calls: recursive data types often necessitate recursive calls, which are nontrivial
to synthesize. That is because we should be able to reason about the target function yet to
be defined during the search. As a workaround, previous approaches [Albarghouthi et al.
2013; Osera and Zdancewic 2015] require the user to provide a trace-complete specification

where the behaviors of recursive call expressions are part of the specification 1. However,
writing a trace-complete specification is quite unintuitive and difficult even for experts who
are familiar with the synthesizers. To overcome this limitation, there have been previous
methods, including specification strengthening [Miltner et al. 2022], partial evaluation, and
constraint solving [Lubin et al. 2020]. However, these approaches have their weaknesses,
occasionally suffering from scalability issues even for small programs (see Section 6).

• External operators: to synthesize programs that utilize various operators over algebraic
data types, synthesizers often require the user to provide a library of external operators.
However, there is no general method for accelerating synthesis by exploiting the semantics
of such external operators. Previous methods (e.g., [Feser et al. 2015]) rely on pre-defined
deductive rules only applicable to a fixed set of combinators (e.g., map, fold) or resort to
naive enumeration. Therefore, the scalability issues worsen in the presence of a targeted
library of external operators.

In this paper, we propose a novel approach to the inductive synthesis of recursive functional
programs that addresses these challenges.

Our method for handling recursion, which we call block-based pruning, is to carry out synthesis
in two phases: (1) synthesis of blocks satisfying the given examples followed by (2) synthesis
of a recursive program. We define a block as a recursion- and conditional-free expression (i.e.,
straight-line program) that yields an output for a particular input, which is called trace in the
prior work [Kitzelmann and Schmid 2006; Summers 1986]. For each input-output example, we first
synthesize as many blocks satisfying that example as possible. Based on an efficient version space
learning, we effectively deal with possibly an enormous number of blocks 2. And then, we explore
the space of recursive programs top-down, generating incomplete candidate programs with holes
(which we call hypotheses). For each hypothesis containing recursive calls, we transform it into
blocks possibly with holes (which we call open blocks) by symbolic evaluation interleaved with
concrete evaluation. If the open blocks cannot be the blocks synthesized in the earlier phase by
filling the holes, the hypothesis is determined to be inconsistent with the blocks and is discarded.

Our method for handling external operators, which we call library sampling, is to sample input-
output behaviors of library functions and use them for synthesis. This method enables a divide-
and-conquer strategy called top-down propagation (or top-down deductive search) for synthesizing
expressions that call arbitrary external operators. Top-down propagation hypothesizes an over-
all structure of the desired program satisfying given input-output examples and then performs
deductive reasoning to recursively deduce new examples that should be satisfied by missing sub-
expressions. For example, suppose we want to synthesize a list manipulating program satisfying
an input-output example [1, 2] 7→ [3, 4]. After hypothesizing that the desired program is of form
map(f ,x) where x denotes input and f is an unknown function subexpression to be synthesized,
we can generate two new input-output examples for f as a synthesis subproblem: 1 7→ 3 and
2 7→ 4. This process is recursively repeated until all subproblems are solved. When hypothesizing
the desired program is a function call expression involving external operators, we can use the

1 For example, suppose the user tries to provide input-output examples [] 7→ 0 and [1, 2, 3] 7→ 3 to synthesize a function that
returns the length of an integer list. To make the specification trace-complete, the user should also provide two additional
input-output examples: [2, 3] 7→ 2 and [3] 7→ 1.
2E.g., a graph of 2470 nodes is used to represent over 7 million blocks (for the list_rev_append benchmark in Section 6).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

Inductive Synthesis of Structurally Recursive Functional Programs from Non-recursive Expressions 70:3

Fig. 1. High-level architecture of our synthesis algorithm.

input-output samples of the library functions to deduce new examples for missing sub-expressions.
This method is applicable even for black-box libraries.

Fig. 1 presents the overall architecture of our synthesis algorithm, inspired by a recently proposed
synthesis strategy [Lee 2021]. Our synthesis algorithm consists of three key modules, namely
Bottom-up enumerator, Block generator, and Candidate generator :

• Bo�om-up enumerator: Given synthesis specification comprising input-output examples
and usable external operators, and a number n, the Bottom-up enumerator module generates
two ingredients for the other modules: components and inverse maps. The components are
expressions (of size ≤ n) that can be used to construct blocks and recursive programs. The
inverse maps are finite maps from outputs to inputs of the external operators and derived
from input-output samples collected from concrete evaluation of the external operators.

• Block generator: Given the two ingredients from Bottom-up enumerator, the Block generator
module generates blocks. For each input-output example, the module generates as many
satisfying blocks as possible using the components. The block generation phase can be quickly
done by top-down propagation. To control blocks in an enormous amount, we make use of
version space representations to efficiently enumerate and store them.

• Candidate generator: Given the blocks generated by Block generator, theCandidate generator
module searches for a solution also by top-down propagation. Startingwith an empty program,
it generates a sequence of hypotheses (i.e., partial programs with holes). During the search,
any hypothesis inconsistent with the blocks is discarded early. Candidate generator keeps
generating hypotheses until it finds a solution, or all candidates have been explored in the
search space. If a solution cannot be found using the current components, the whole process
is repeated with the component size n increased by 1, thereby exploring the larger search
space in the next iteration.

Our algorithm eventually finds a solution if it exists because Bottom-up enumerator will eventually
enumerate a solution of finite size. Also, our method does not require the user to provide unintuitive
trace-complete specifications.
We implemented our approach in a tool called Trio. We evaluate Trio on 60 benchmarks: 45

out of 60 are from prior work [Osera and Zdancewic 2015], and the others are newly added. We
use two types of specifications: (1) input-output examples and (2) reference implementations. Our
evaluation results suggest that Trio is more scalable than prior work on all types of specifications.
In particular, our tool can synthesize 98% (59) of the functions from input/output examples and
95% (57) of the functions from reference implementations. We also compare Trio against simpler

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

70:4 Woosuk Lee and Hangyeol Cho

variants that do not perform either block-based pruning or library sampling, and we empirically
prove the efficacy of the two techniques.
Our contributions are as folllows:

• A novel general method for synthesizing recursive programs from input-output examples:
We propose a general algorithm for effectively synthesizing recursion- and calls to external
operators. We believe our method is potentially applicable to other synthesis contexts.

• Confirming the method’s effectiveness in an extensive experimental evaluation: We have
conducted an extensive experimental evaluation on synthesis benchmarks from prior work
and new benchmarks. Furthermore, we publicly release the implementation of our approach
as a tool called Trio (available at https://github.com/pslhy/trio).

2 OVERVIEW

In this section, we give an overview of our method using the problem of synthesizing a recursive
function mul for multiplying two natural numbers. The specification for the problem comprises
an inductive data type for natural numbers, an external operator add for adding two natural
numbers that can be used to synthesize mul, and input-output examples embedded in a hypothesis.
A hypothesis is a program that may have placeholders for missing expressions. We will call such
a placeholder a hole (denoted ✷), which is associated with input-output examples that should be
satisfied by a sub-expression in that position. In the following specification (in OCaml-like syntax),

type nat = Z | S of nat

rec add (x : nat, y : nat) : nat = match x with Z -> Z | S _ -> S (add (S−1(x), y))

rec mul (x : nat, y : nat) : nat = ✷in

✷in is a hole associated with the set of input-output examples {(0, 1) 7→ 0, (1, 2) 7→ 2, (2, 1) 7→ 2}.
S−1 denotes a destructor which extracts the subcomponent of a constructor application of S. Such
destructors obviate the need for introducing new variables bound by patterns inmatch expressions.
The following program is a solution.

Psol = rec mul (x : nat, y : nat) : nat =

match x with Z -> Z | S _ -> add (mul (S−1(x), y), y)

We will describe how the three modules of our system interact with each other to synthesize
the desired program. For brevity, we will often use literals 0, 1, · · · as syntactic sugar for the
corresponding naturals Z, S(Z), · · · .

Component Generation and Library Sampling. Bottom-up enumerator first generates the
following component pool C of expressions whose size is not greater than some user-provided
upper bound.

C = {x, y, S−1(x), S−1(S−1(x)), S−1(y), S−1(S−1(y)), Z, add, (S−1(x), y), · · · }

During bottom-up enumeration, it adopts the existing pruning technique based on observational

equivalence to avoid maintaining multiple components of the same behaviors with respect to
the input examples. 3 This pruning technique drastically reduces the number of components by
removing redundant expressions, which leads to overall performance gains. These components
will be used to construct blocks and recursive programs in the following phases.

3 Whenever a new program is enumerated, it is checked if it is “observationally equivalent” to any of the programs already
constructed; i.e., those which produce the same outputs on inputs that were given as a specification. If so, the new program
is discarded (e.g., x + x is discarded if 2 × x is already enumerated). This is done to avoid enumerating redundant programs.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

https://github.com/pslhy/trio

Inductive Synthesis of Structurally Recursive Functional Programs from Non-recursive Expressions 70:5

Next, for each function that a component in C may evaluate to, it constructs an inverse map
of the function through a method we call library sampling. An inverse map of a function is a
finite map from output values to input values of the function. Because add is the only function
component, we construct the inverse map of add, which can be derived from input-output samples
of add. Such samples can be obtained by evaluating add with input values that are not greater than
the values in the examples. The reason behind this choice is that we aim to synthesize structurally
decreasing recursive programs like previous approaches [Frankle et al. 2016; Lubin et al. 2020;
Miltner et al. 2022; Osera and Zdancewic 2015] where arguments of recursive calls are strictly
decreasing, and we observe inputs to the target function often flow to the external operators as
arguments. Using numbers not greater than the greatest number (2) in the input-output examples
(i.e., (0, 0), (0, 1), · · · , (2, 2)) as inputs, we evaluate the add function and obtain the inverse map
add−1 = {0 7→ {(0, 0)}, 1 7→ {(0, 1), (1, 0)}, · · · , 4 7→ {(2, 2)}}.

Block Generation. Next, for each input-output example, Block generator generates a set of
blocks satisfying that example. Given an input-output example, it adds all the components in C

satisfying the example to the block set. Irrespective of whether or not any component is added, to
find as various blocks as possible, it continues by hypothesizing about the structure of the other
possible blocks and deduces new input-output examples that should be satisfied by missing holes.
For each hole, it recursively searches for all the blocks that satisfy the hole. For example, consider
the second input-output example (1, 2) 7→ 2. Block generator first finds all components in C that
satisfy the example. Because the desired output 2 is the value of the second parameter y, y is added
to the set of blocks. The search continues by hypothesizing about all possible structures of the
other blocks. Suppose it attempts to find blocks of the form S (· · ·), generating a hypothesis S(✷1).
The hole ✷1 is associated with (1, 2) 7→ 1 where the output example is obtained by removing the
constructor head S from the output example 2. Because the desired output 1 is the value of the first
parameter x, S(x) is added to the block set. For other possible blocks in place of ✷1, it attempts to
find blocks of the form add (· · ·). To generate hypotheses involving the external operator, it uses the
inverse map of add. Since add−1(1) = {(0, 1), (1, 0)}, it generates two hypotheses S(add (✷2,✷3))

and S(add (✷3,✷2))where✷2 and✷3 are associated with (1, 2) 7→ 0 and (1, 2) 7→ 1, respectively. By
finding components satisfying the holes, S(add (Z, Z)), S(add (Z, x)), S(add (x, Z)), and S(add (x, x))
are added to the block set. It further refines the holes ✷2 and ✷3 by recursively generating other
hypotheses in a similar manner to find more blocks.
During the search, hypotheses containing recursive calls and match expressions are not taken

into account because resulting blocks should be recursion- and conditional-free. Let us denote Bi
as the set of blocks for the i-th input-output example. We obtain the following blocks.

(0, 1) 7→ 0: B0 = {0, x, add (0, 0), add (0, x), ...}

(1, 2) 7→ 2: B1 = {2, y, S(add (0, x)), add (S−1(x),y), ...}

(2, 1) 7→ 2: B2 = {x, S(y), add (x, Z), add (add (S−1(x), y), y), ...}

Because there are often infinitely many blocks satisfying each example, we limit the maximum
number of steps of top-down propagation to ensure the termination of the block generation phase.
For example, if we set the maximum number to be 1, in the above example, we would not recursively
generate other hypotheses for the holes ✷2 and ✷3 as we already went through one step of top-
down propagation. Even though we finitize the search space, there are often still many blocks.
To efficiently enumerate and store them, we use a version space representation, which is a data
structure that compactly represents a large set of programs (see Section 4.4).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

70:6 Woosuk Lee and Hangyeol Cho

Candidate Generation. Equipped with the blocks generated by Block generator, Candidate
generator searches for the desired recursive program by performing top-down propagation, similar
to what Block generator does but with a few differences: recursive calls and match expressions are
generated, and all the input-output examples are considered at once, in contrast to Block generator

that only considers one input-output example at a time. Suppose Candidate generator hypothesizes
that the solution is amatch expression with a guessed scrutinee x. Then, it generates the following
hypothesis, distributing the input-output examples of ✷in into the two different branches.

P0 = rec mul (x : nat, y : nat) : nat = match x with Z -> ✷1 | S _ -> ✷2

where ✷1 = {(0, 1) 7→ 0} and ✷2 = {(1, 2) 7→ 2, (2, 1) 7→ 2}. Suppose Candidate generator fills
the hole ✷1 with component x that satisfies the example and moves on to the hole ✷2, trying to
generate a hypothesis of the form add (· · ·) in that position. Similarly to what Block generator

did, Candidate generator uses the inverse map of add to generate new hypotheses. Because two
output examples in ✷2 are 2 and there are three inputs of add that lead to the desired output 2
(add−1(2) = {(0, 2), (1, 1), (2, 0)}), it deduces 9(= 32) new hypotheses. Among them, let us consider
the following hypothesis

P1 = rec mul (x : nat, y : nat) : nat = match x with Z -> x | S _ -> add ✷3

where ✷3 = {(1, 2) 7→ (0, 2), (2, 1) 7→ (1, 1)}. Observing the desired outputs are tuples of length
2, Candidate generator distributes the input-output examples into two new holes, generating the
following hypothesis.

P2 = rec mul (x : nat, y : nat) : nat = match x with Z -> x | S _ -> add (✷4,✷5)

where ✷4 = {(1, 2) 7→ 0, (2, 1) 7→ 1} and ✷5 = {(1, 2) 7→ 2, (2, 1) 7→ 1}. Suppose now it refines the
hole ✷4 by generating a hypothesis of the form mul (· · ·).

P3 = rec mul (x : nat, y : nat) : nat = match x with Z -> x | S _ -> add ((mul ✷6),✷5)

Because mul is the target function yet to be defined, we cannot deduce examples for ✷6. In such a
case, we try enumerating all the components in C that can be used as arguments. Recall that we
only consider structurally decreasing arguments for recursive calls. For example, mul (S−1(x), y) is
a valid recursive call as the first parameter decreases. By plugging it into the hole, we obtain

P4 = rec mul (x : nat, y : nat) : nat =

match x with Z -> x | S _ -> add (mul (S−1(x), y),✷5)

Whenever a hypothesis containing recursive calls is generated, Candidate generator checks the
feasibility of the hypothesis. It first performs symbolic evaluation interleaved with concrete evalua-
tion with each input example on the hypothesis to obtain blocks. Our symbolic evaluation obeys
the following rules.

• The body of the hypothesis is substituted into every position of a recursive call, and actual
parameters are substituted for formal parameters.

• Every scrutinee in a match expression is concretely evaluated with a given input to take a
branch.

• Calls to external operators and holes are left unchanged.

We call this process unfolding. As a result of unfolding, we obtain an open block, i.e., a block possibly
with holes. Let us denote→∗ as one or more steps of the symbolic evaluation. The followings show
how to derive a block Bj from the hypothesis for each j-th input-output example associated with
✷in .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

Inductive Synthesis of Structurally Recursive Functional Programs from Non-recursive Expressions 70:7

(0, 1) 7→ 0: mul (x,y)

→ match x with Z -> x | S _ -> add (mul (S−1(x), y),✷5)

→ match 0 with Z -> x | S _ -> add (mul (S−1(x), y),✷5)

→ x (= B0)

(1, 2) 7→ 2: mul (x,y)

→ match x with Z -> x | S _ -> add (mul (S−1(x), y),✷5)

→∗ add (mul (S−1(x), y),✷5)

→ add (match S−1(x) with Z -> S−1(x) | S _ -> add (mul (S−2(x), y),✷5), ✷5)

→ add (match 0 with Z -> S−1(x) | S _ -> add (mul (S−2(x), y),✷5), ✷5)

→ add (S−1(x), ✷5) (= B1)

(2, 1) 7→ 2: mul (x,y)

→ match x with Z -> x | S _ -> add (mul (S−1(x), y),✷5)

→∗ add (mul (S−1(x), y),✷5)

→ add (match S−1(x) with Z -> S−1(x) | S _ -> add (mul (S−2(x), y),✷5), ✷5)

→ add (match 1 with Z -> S−1(x) | S _ -> add (mul (S−2(x), y),✷5), ✷5)

→∗ add (add (mul (S−2(x), y),✷5), ✷5)

→ add (add (match S−2(x) with Z -> S−2(x) | S _ -> add (mul (S−3(x), y),✷5), ✷5), ✷5)

→∗ add (add (S−2(x), ✷5), ✷5) (= B2)

where S−2(x) is a shorthand for S−1(S−1(x)). Then, for all j , it checks if each block Bj can be identical
to another block in Bj by properly substituting each hole. B0, which is x, is identical to x in B0.
B1, which is add (S−1(x), ✷5), can be identical to add (S−1(x), y) in B1. Lastly, B2, which is add (add
(S−2(x), ✷5), ✷5), can be identical to add (add (S−2(x), y), y) in B2. This matching process can be
efficiently done by traversing the version spaces of the blocks. The fact that the hypothesis can be
unfolded into blocks satisfying the examples suggests that we may find a solution if we further
refine the hypothesis. Thus, P4 is determined to be feasible. Next, the hole ✷5 can be filled with y,
which is a component satisfying the example over the hole, and we find the solution.

Feedback Loop for Guaranteeing Search Completeness. Although the block-based pruning
presented may be unsound in some cases, the overall algorithm eventually finds a solution if it
exists. A feasible hypothesis may be mistakenly rejected if Block generator misses some satisfying
blocks because of its limited search in a finitized space. Trio uses a feedback loop to avoid such
unsound pruning. If a solution cannot be found using a current set of components, Trio will add
larger components into the component pool and repeat the entire process, so that Block generator
can generate more blocks and hopefully avoid mistakenly rejecting correct hypotheses.
Also, when constructing inverse maps, despite restricting the domain of external functions to

be the set of values each of which is not greater than the greatest value in the examples, we do
not miss a solution involving external functions. This is because the bottom-up enumerator will
eventually enumerate necessary function call expressions of finite size.

3 PROBLEM DEFINITION

In this section, we define our problem of inductive synthesis of recursive functional programs. We
first define an ML-like functional language in which we synthesize programs.

3.1 Language

We consider an idealized functional language similar to the core of ML. Our target language features
algebraic data types and recursive functions with the syntax definition depicted in Fig. 2. Programs
P are recursive functions whose bodies are expressions e . Application is written e1 e2, κ ranges

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

70:8 Woosuk Lee and Hangyeol Cho

e ∈ Exp (Expressions) κ ∈ Constructors (Constructors)

v ∈ Val (Values) ✷u ∈ Val
fin
→ Val (Input-Output Examples)

P ::= rec f(x) = e

e ::= x | e1 e2 | κ(e1, · · · , ea(κ)) | κ
−1(e) | (e1, · · · , en) | e .n | rec f (x) = e

| match e with κj _ → ej
k | ✷u

v ::= κ(v1, · · · ,vk) | (v1, · · · ,vm) | rec f (x) = e

σ ::= {} | {x 7→ v} ∪ σ

Fig. 2. Our ML-like language

over data type constructors, a(κ) denotes the arity of κ, κ−1 denotes a destructor which extracts
all the subcomponents of a constructor application of κ as a tuple. An expression e .n projects the

n-th component of a tuple. We use ML-style pattern match expressions. We use κj _ → ej
k to

denote κ1 _ → e1 | · · · | κk _ → ek . A hole is written ✷u , where u is the hole name, which we
tacitly assume is unique. Each hole is associated with input-output examples, a finite function from
input values to output values. Values v are made up of constructor values for data types, tuples,
and recursive functions. Recursive functions can be used as input examples when synthesizing
higher-order functions but cannot be used as output examples. Environments σ map variables to
values. For conciseness, we assume that all functions take a single argument, which does not harm
the expressivity of the language since we can represent multiple inputs as a single tuple.

3.2 Notations

We will use some notations throughout the remaining sections. An open hypothesis (resp. open
expression) is a program (resp. expression) that contains one or more holes. A closed hypothesis is
a program that does not contain any holes. We will use the fixed variables f and x to denote the
target function and its formal parameter, respectively. We use σ ⊢ P ⇒ v to denote the standard
multi-step call-by-value operational semantics of a program P without holes under environment σ .

3.3 Problem Definition

Given an environment σ that provides definitions of external functions and an initial open hy-
pothesis Pin = rec f(x) = ✷in where ✷in =

⋃
1≤j≤n{i j 7→ oj } represents input-output examples

that should be satisfied by the function body, our goal is to find a closed hypothesis of form
P = rec f(x) = e that satisfies the input-output examples of ✷in . Formally, ∀1 ≤ j ≤ n. σ [f 7→

rec f(x) = e, x 7→ i j] ⊢ P ⇒ oj (denoted P |=σ ✷in). We just use the user-provided external
functions without inventing new ones.

4 ALGORITHM

This section formally describes our algorithm, inspired by the previous methods by Lee [2021] and
Feser et al. [2015].

4.1 Overall Algorithm

Fig. 1 shows the high-level structure of our algorithm. The algorithm takes as input an environment
σ that provides definitions of external functions, which we tacitly assume to be globally accessible
throughout the algorithm, an initial open hypothesis with input-output examples, and initial
component size n. Finally, it returns a program P that satisfies the input-output examples. With

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

Inductive Synthesis of Structurally Recursive Functional Programs from Non-recursive Expressions 70:9

Algorithm 1 The Trio Algorithm

Require: (Global variable) environment σ that provides definitions of external functions
Require: Initial component size n
Require: A hypothesis Pin = rec f(x) = ✷in where ✷in =

⋃
1≤j≤n {i j 7→ oj }

Ensure: A solution program P

1: C := ∅

2: repeat

3: C := ComponentGeneration(C,✷in ,n) ▷ C : P (Exp)

4: I := LibrarySampling(C,✷in) ▷ I : P (Val ×Val ×Val)

5: Csimple := C − RecursiveOrMatchExprs(C)
6: B := BlockGen(Csimple,I,✷in) ▷ B : Val ×Val → P (Exp)

7: Q := {Pin }

8: while Q , ∅ do

9: remove P such that P has minimal cost from Q ▷ Using a cost model in Section 5.2
10: if Holes(P) = ∅ then

11: if P |=σ ✷in then return P

12: else continue

13: end if

14: end if

15: Pick a hole ✷u in P

16: for e ∈ Deduce(C,I,✷u) do

17: P ′ := P[e/✷u]

18: if Holes(P ′) = ∅ then insert P ′ into Q
19: else if BlockConsistent(P ′,B,✷in) then

20: insert P ′ into Q
21: end if

22: end for

23: end while

24: n := n + 1

25: until false

Bottom-Up

Enumerator

Block Generator

Candidate

Generator

initially empty component set C, the main loop of our synthesis procedure (line 2 – 25) is repeated
until a solution is found. The loop starts by invoking the ComponentGeneration procedure
(line 3) which takes a current component pool C, the input-output examples ✷in , and the target
component size n. The procedure generates new components by composing existing components
in C. It applies the standard pruning technique based on observational equivalence with respect to
the input examples. Expressions with recursive calls to the target function being synthesized can be
included in the resulting component pool. Because we cannot evaluate such recursive components
as the function is unknown yet, we cannot apply the observational equivalence reduction based
on their outputs. Instead, we exploit functional congruence, i.e., the same input to the function
always results in the same output. For example, we do not maintain both of f 2 and f (1 + 1) in the
component pool. Next, the LibrarySampling procedure (Section 4.2) is invoked to derive an inverse
map for each function expression in the component pool (line 4). Next, the BlockGen procedure
is invoked to obtain satisfying blocks for each input-output example (line 6). Each block must
be recursion- and conditional-free because the target function is unknown yet and conditionals
are not necessary when it comes to a single input-output example. Therefore, any components
containing recursive calls and conditionals must not be used in blocks. We exclude such components
from C (line 5), and provide the reduced component set to the BlockGen procedure (Section 4.4).
With inverse maps I and blocks B, the inner loop (lines 8 – 23) iteratively processes elements in

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

70:10 Woosuk Lee and Hangyeol Cho

the priority queue Q . The priority queue Q contains hypotheses (initially only Pin), and is sorted
according to the cost (Section 5.2) of each hypothesis. In each iteration, we pick a minimum-cost
hypothesis P from the queue. If P is closed (line 10) and correct with respect to the top-level
input-output examples, P is returned as a solution (line 11). Otherwise, we continue investigating
other hypotheses in the queue. If a chosen hypothesis P is open, we pick a hole ✷u in P (line 15).
Then, the Deduce procedure (Section 4.3) returns possible replacements for the hole ✷u (line 16). A
replacement e for the hole may be a closed expression satisfying the example of ✷u , or an open
expression with new holes. For each replacement e , we obtain a new hypothesis P ′ by replacing the
hole with e (line 17). If P ′ is closed, there are no unknowns left to be synthesized (line 18). Hence,
we add P ′ into the queue, so that its correctness can be checked in the next iterations. If P ′ is open,
we check its consistency with the blocks B before adding it to the queue (line 19) by invoking the
BlockConsistent procedure (Section 4.5). If the queue becomes empty before a solution is found,
we increase the component size n by 1 (line 24) and restart the main loop.

Our algorithm is sound and complete in that it finds a program correct with respect to the given
input-output examples if it exists in the search space.

Theorem 4.1. Algo. 1 finds a solution to a given synthesis problem if it exists.

Proof. Available in the Supplemental Material at the ACM DL. □

4.2 Ge�ing Inverse Maps of External Functions by Library Sampling

This section describes the LibrarySampling procedure that derives a set I whose each element is a
triple (д,vo ,vi) where д is a function value and vi and vo are non-function values, meaning that
σ ⊢ д vi ⇒ vo . We will write (д,vo ,vi) as д−1(vo) = vi .

Given the component pool C and the top-level input-output examples ✷in =
⋃

1≤j≤n{i j 7→ oj }

as input, we first compute a finite domain D = {v ∈ Val | ∃1 ≤ j ≤ n. v ⊑ i j } where ⊑ denotes a
well-founded ordering on values. In our implementation, we represent values as abstract syntax
trees and use the subtree relation. Using the values in D as inputs, we compute a set of inverse
maps as follows:

I = {д−1(vo) = vi | д,vo ∈ Val,vi ∈ D,∃e ∈ C, 1 ≤ j ≤ n. σ [x 7→ i j] ⊢ e ⇒ д,σ ⊢ д vi ⇒ vo}

The use of the component pool C is for computing inverse maps of functions provided as input
examples, which is useful for synthesizing higher-order functions.

Example 4.2. Consider the following hypothesis.

type nat = Z | S of nat

rec f (x : (nat -> nat) * nat) : nat = ✷in

where ✷in = {(rec one (n) = S(Z), 1) 7→ 1, (rec inc (n) = S(n), 0) 7→ 1}. The solution is

rec f (x : (nat -> nat) * nat) : nat = x.1 x.2

Suppose the component pool C = {x.1, x.2}. The domain D is {0, 1}. We derive (rec one(n) =
S(Z))−1(1) = 0 ∈ I because σ [x 7→ (rec one(n) = S(Z), 1)] ⊢ x.1 ⇒ rec one(n) = S(Z) and
σ ⊢ (rec one(n) = S(Z)) 0 ⇒ 1. In a similar manner, we conclude (rec inc(n) = S(n))−1(1) = 0 ∈ I.
In conclusion,

I = {(rec one(n) = S(Z))−1(1) = 0, (rec one(n) = S(Z))−1(1) = 1, (rec inc(n) = S(n))−1(1) = 0}.

We consider D to be the domain for the following reason. We permit recursive calls on values
that are strictly smaller than the input to ensure that our synthesized programs terminate similarly
to prior work [Miltner et al. 2022]. In other words, if vin is provided as an input, recursive calls to f

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

Inductive Synthesis of Structurally Recursive Functional Programs from Non-recursive Expressions 70:11

{e ∈ C | e |=σ ✷u } ⊆ Deduce(C,I,✷u)
d_component

{e ∈ C | e contains recursive calls.} ⊆ Deduce(C,I,✷u)
d_rec

✷u =
⋃

1≤j≤n {i j 7→ κ(v1j , · · · ,vk j)} ∀1 ≤ m ≤ k . ✷um =
⋃

1≤j≤n {i j 7→ vmj }

κ(✷u1 , · · · ,✷uk) ∈ Deduce(C,I,✷u)
d_ctor

✷u =
⋃

1≤j≤n {i j 7→ oj } κ ∈ Constructors ✷u′ =
⋃

1≤j≤n{ij 7→ κ(oj)}

κ−1(✷u′) ∈ Deduce(C,I,✷u)
d_dtor

✷u =
⋃

1≤j≤n {i j 7→ oj } e ∈ C m ∈ N ∀1 ≤ j ≤ n. σ [x 7→ i j] ⊢ e .m ⇒ oj

e .m ∈ Deduce(C,I,✷u)
d_proj

✷u =
⋃

1≤j≤n {i j 7→ (v1j , · · · ,vk j)} ∀1 ≤ m ≤ k . ✷um =
⋃

1≤j≤n {i j 7→ vmj }

(✷u1 , · · · ,✷uk) ∈ Deduce(C,I,✷u)
d_tuple

✷u =
⋃

1≤j≤n {i j 7→ oj } e ∈ C

∀1 ≤ m ≤ k . ✷um =
⋃
j ∈Im {i j 7→ oj } where Im = {j | 1 ≤ j ≤ n,σ [x 7→ i j] ⊢ e ⇒ κm (_)}

match e with κi _ → ✷ui
k ∈ Deduce(C,I,✷u)

d_match

✷u =
⋃

1≤j≤n {i j 7→ oj } ✷u1 =
⋃

1≤j≤n {i j 7→ дj }

✷u2 =
⋃

1≤j≤n {i j 7→ vj } ∀1 ≤ j ≤ n. дj
−1(oj) = vj ∈ I

✷u1 ✷u2 ∈ Deduce(C,I,✷u)
d_extcall

Fig. 3. Inference rules for Deduce

can only be applied to values v when v ❁ vin . Inputs to a function often flow to other functions
called inside of it. Therefore, it is likely that I captures input-output behaviors of library functions
that can be observed during the evaluation of the desired program with the user-provided input
examples.

4.3 The Deduce Procedure

We now describe the Deduce procedure that returns a set of expressions that are either closed or
open as possible replacements for a given hole ✷u .
Deduce(C,I,✷u) is the smallest set of expressions satisfying the constraints depicted in Fig. 3.

The d_component rule says if we have components in C that immediately satisfy ✷u , every such
component can fill the hole (e |=σ ✷u denotes ∀i 7→ o ∈ ✷u . σ [x 7→ i] ⊢ e ⇒ o). d_rec indicates
that all recursive components in C are considered potential replacements for the hole. This rule is
under an optimistic assumption that any recursive expressions whose semantics is unknown yet
may satisfy the hole, although in reality not all recursive expressions can do. Later, any hypothesis
containing a recursive call that is determined to be infeasible will be discarded (will be detailed
in Section 4.5). d_ctor generates new examples for arguments of a constructor application. If
the example values in the hole ✷u consist of constructor values with a shared constructor κ of
arity k , then it creates k new examples constraints over the k arguments of the constructor value.
d_dtor creates a new example for the argument of a destructor value. The new example consists of
constructor values with a shared constructorκ whereκ can be any constructor. d_proj creates closed
expressions as replacements for the hole. d_tuple is for creating new examples corresponding

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

70:12 Woosuk Lee and Hangyeol Cho

to arguments that must be synthesized for a tuple expression. The deductive reasoning process
is similar to that of d_ctor. d_match first identifies components that can be used as scrutinees.
Then, for each match expression whose scrutinee is such a component, it distributes the given
examples in the hole to each branch. Lastly, d_extcall uses the inverse maps of external functions.
For example, for an input-output example i 7→ o, if we can find a triple д−1(o) = v in I, then we can
deduce an example i 7→ д for the function part and another example i 7→ v for the argument part.

Example 4.3. Consider the overview example in Section 2. Let us denote the target function as f.
Suppose we have a hole ✷u = {(1, 2) 7→ 2} and a component pool C = { x, f (S−1(x.1), x.2), 2, add
}. We can deduce the following constraints by applying the rules in Fig. 3.

By d_component, 2 ∈ Deduce(C,I,✷u) (∵ 2 ∈ C, 2 |=σ ✷u)

By d_rec, f (S−1(x.1), x.2) ∈ Deduce(C,I,✷u)

By d_ctor, S(✷u1) ∈ Deduce(C,I,✷u) (✷u1 = {(1, 2) 7→ 1})

By d_dtor, S−1(✷u2) ∈ Deduce(C,I,✷u) (✷u2 = {(1, 2) 7→ 3})

By d_proj, x.2 ∈ Deduce(C,I,✷u) (∵ x ∈ C, x.2 |=σ ✷u)

By d_match,match 2 with Z → ✷u3 | S _ → ✷u ∈ Deduce(C,I,✷u) (✷u3 = ∅)

(∵ 2 ∈ C,σ [x 7→ (1, 2)] ⊢ 2 ⇒ S _)

By d_extcall,

✷u4 ✷u5 ∈ Deduce(C,I,✷u) (✷u4 = {(1, 2) 7→ rec add . . .},✷u5 = {(1, 2) 7→ (2, 0)})

✷u4 ✷u6 ∈ Deduce(C,I,✷u) (✷u6 = {(1, 2) 7→ (1, 1)})

✷u4 ✷u7 ∈ Deduce(C,I,✷u) (✷u7 = {(1, 2) 7→ (0, 2)})

(∵ {(rec add · · ·)−1(2) = (2, 0), (rec add · · ·)−1(2) = (1, 1), (rec add · · ·)−1(2) = (0, 2)} ⊆ I)

Note that we cannot apply the d_tuple rule because ✷u does not contain any tuple. Also, when
applying the d_match rule, we cannot use the components x and f (S−1(x.1), x.2) as a scrutinee
because neither of them evaluates to a constructor application (in particular, f (S−1(x.1), x.2) cannot
evaluate to a concrete value as f is not defined yet). The following is the smallest solution satisfying
the constraints over Deduce(C,✷u).

Deduce(C,I,✷u) = {2, f (S−1(x.1), x.2), S(✷u1), S
−1(✷u2), x.2,match 2 with Z → ✷u3 | S_ → ✷u ,

✷u4 ✷u5 ,✷u4 ✷u6 ,✷u4 ✷u7 }

The Deduce procedure is sound in the following sense.

Definition 4.4 (Soundness of Deduction). Let ✷u be a set of input-output examples, and let C and
I be a set of components and a set of inverse maps, respectively. If there exists an expression
satisfying ✷u , for every open expression e ∈ Deduce(C,I,✷u), for every hole ✷u′ in e , there exists
an expression satisfying the hole ✷u′ .

Intuitively, the deduction procedure is sound if there exists a solution to a synthesis task, then
there also exists a solution to every synthesis subtask derived from the original synthesis task.

Theorem 4.5. Without using the d_extcall rule, the Deduce procedure is sound.

Proof. Available in the Supplemental Material at the ACM DL.
□

The following example shows that the Deduce procedure can be unsound when using the
d_extcall rule.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

Inductive Synthesis of Structurally Recursive Functional Programs from Non-recursive Expressions 70:13

✷u =
⋃

1≤j≤n {i j 7→ oj }

BlockGen(C,I,✷u) = {(i j ,oj) 7→ Blocks(C,I, i j 7→ oj) | 1 ≤ j ≤ n}
b_gen

SimpleBlocks = {e ∈ C | σ [x 7→ i] ⊢ e ⇒ o}

Blocks(C,I, i 7→ o) =
⋃

CompoundBlocks(C,I, i 7→ o) ∪ SimpleBlocks
b_gen_per_ex

κ(✷u1 , · · · ,✷uk) ∈ Deduce(C,I, {i 7→ o}) ∀1 ≤ m ≤ k . ẽm = Blocks(C,I,✷um)

κ(ẽ1, · · · , ẽk) ⊆ CompoundBlocks(C,I, i 7→ o)
b_ctor

κ−1(✷u) ∈ Deduce(C,I, {i 7→ o}) ẽ = Blocks(C,I,✷u)

κ−1(ẽ) ⊆ CompoundBlocks(C,I, i 7→ o)
b_dtor

e .n ∈ Deduce(C,I, {i 7→ o})

e .n ∈ CompoundBlocks(C,I, i 7→ o)
b_proj

(✷u1 , · · · ,✷uk) ∈ Deduce(C,I, {i 7→ o}) ∀1 ≤ m ≤ k . ẽm = Blocks(C,I,✷um)

(ẽ1, · · · , ẽk) ⊆ CompoundBlocks(C,I, i 7→ o)
b_tuple

✷u1 ✷u2 ∈ Deduce(C,I, {i 7→ o}) ∀1 ≤ m ≤ 2. Ẽm = Blocks(C,I,✷um)

(ẽ1 ẽ2) ⊆ CompoundBlocks(C,I, i 7→ o)
b_app

Fig. 4. Inference rules for BlockGen

Example 4.6. Recall Example 4.2. Let us denote the first and second input examples in ✷in as i1
and i2 respectively (i.e., i1 = (rec one (n) = S(Z), 1), i2 = (rec inc (n) = S(n), 0)). We can deduce the
following fact by applying the d_extcall rule because (rec one · · ·)−1(1) = 0 ∈ I.

✷u1 ✷u2 ∈ Deduce(C,✷in) (✷u1 = {i1 7→ rec one · · · , i2 7→ rec one · · · },✷u2 = {i1 7→ 0, i2 7→ 0})

We cannot synthesize an expression satisfying the hole ✷u1 . That is because we cannot synthesize
an expression that evalutes to the one function under the environment where x is bound to i2 (the
only available function is inc). Recall that we do not synthesize any new auxiliary functions.

4.4 Constructing Blocks From Each Input-Output Example

This section describes the BlockGen procedure for computing satisfying blocks for each input-
output example in ✷in . The set of blocks is stored in a version space [Gulwani 2011] which is a
compact representation of expressions.
We begin with the definition of version spaces.

Definition 4.7 (Version Space). A version space is either

• A union:
⋃

V where V is a set of version spaces
• An expression
• An application: written (ẽ1 ẽ2) where ẽi are version spaces
• A tuple: written (ẽ1, · · · , ẽk) where ẽi are version spaces
• A constructor: written κ(ẽ1, · · · , ẽk) where ẽi are version spaces and κ is a constructor
• A destructor: written κ−1 (̃e) where ẽ is a version space and κ is a constructor
• The empty set, ∅

A version space can be understood as an E-graph where each node represents a set of expressions.
Each leaf node represents a single expression, and they are composed into larger sets. The union
operator

⋃
symbolizes a nondeterministic choice between multiple expressions, allowing version

spaces to compactly represent huge sets of expressions.

Example 4.8. The version space (add (
⋃
{x, Z},

⋃
{x, Z}) encodes four different expressions:

add (x, x), add (x, Z), add (Z, x), and add (Z, Z).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

70:14 Woosuk Lee and Hangyeol Cho

The set of expressions encoded by a version space is defined as follows:

Definition 4.9. The set represented by a version space is written ⟦ ẽ ⟧ and is defined recursively
as:

⟦e⟧ = e (e is an expression) ⟦∅⟧ = ∅ ⟦
⋃

V⟧ = {e ∈ ⟦ẽ⟧ | ẽ ∈ V}

⟦(ẽ1, · · · , ẽk)⟧ = {(e1, · · · , ek) | ∀1 ≤ j ≤ k . ej ∈
�
ẽj
�
}

⟦κ(ẽ1, · · · , ẽk)⟧ = {κ(e1, · · · , ek) | ∀1 ≤ j ≤ k . ej ∈
�
ẽj
�
}

�
κ−1 (̃e)

�
= {κ−1(e) | e ∈ ⟦ẽ⟧} ⟦(ẽ1 ẽ2)⟧ = {(e1 e2) | ∀1 ≤ j ≤ 2. ej ∈

�
ẽj
�
}

With this in mind, we are ready to describe how to obtain a version space of blocks. Given a set
C of components and the top-level input-output examples ✷in , the BlockGen procedure computes
the smallest version spaces satisfying the constraints in Fig. 4. The result maps each input-output
example to a version space of satisfying blocks. In the b_gen_per_ex rule, Blocks(C, i 7→ o) denotes
the version space of blocks satisfying a single input-output example i 7→ o. The other rules depict
how to compute a version space for a single example. SimpleBlocks denotes a set of component
expressions satisfying that example. CompoundBlocks denotes a set of version spaces each of
which is not a single expression. We reuse the Deduce procedure to obtain CompoundBlocks,
which can be derived by the other remaining rules b_ctor, · · · , b_app. Note that the given set of
components C only includes recursion- and conditional-free expressions (by line 5 in Algo. 1), and
there are no rules for deriving version spaces containing match expressions and recursive calls,
thereby ensuring that the resulting version space represents a set of blocks.

Example 4.10. RecallDeduce(C,I,✷u) in Example 4.3. We describe how to obtain a version space
of blocks for the input-output example✷u = {(1, 2) 7→ 2} using the rules in Fig. 4. Blocks(C,I,✷u)

is computed as follows: first, by the b_gen_per_ex rule,

Blocks(C,I,✷u) =
⋃

CompoundBlocks(C,I,✷u) ∪ SimpleBlocks

where SimpleBlocks = {2} because 2 is the only component satisfying the example. We can deduce
the following constraints over CompoundBlocks(C,I,✷u) as follows:

By b_ctor, S(Blocks(C,I,✷u1)) ⊆ CompoundBlocks(C,I,✷u) (∵ S(✷u1) ∈ Deduce(C,I,✷u))

By b_dtor, S−1(Blocks(C,I,✷u2)) ⊆ CompoundBlocks(C,I,✷u) (∵ S−1(✷u2) ∈ Deduce(C,I,✷u))

By b_proj, x.2 ∈ CompoundBlocks(C,I,✷u) (∵ x.2 ∈ Deduce(C,I,✷u))

By b_app

(Blocks(C,I,✷u4) Blocks(C,I,✷u5)) ⊆ CompoundBlocks(C,I,✷u)

(Blocks(C,I,✷u4) Blocks(C,I,✷u6)) ⊆ CompoundBlocks(C,I,✷u)

(Blocks(C,I,✷u4) Blocks(C,I,✷u7)) ⊆ CompoundBlocks(C,I,✷u)

where ✷u1 , · · · ,✷u7 are the ones defined in Example 4.3. We keep applying the rules to gener-
ate constraints over Blocks(C,I,✷u1), · · · ,Blocks(C,I,✷u7). For example, by the b_gen_per_ex
rule, Blocks(C,I,✷u1) =

⋃
CompoundBlocks(C,I,✷u1) ∪ SimpleBlocks where SimpleBlocks =

∅ because no component in C satisfies the example ✷u1 = {(1, 2) 7→ 1}. Constraints over
CompoundBlocks(C,I,✷u1) are generated by applying the rules in a similar manner. For in-
stance, by the b_proj rule, a constraint x.1 ∈ CompoundBlocks(C,I,✷u1) will be generated since
x.1 ∈ Deduce(C,I,✷u1). Blocks(C,I,✷u4) will include a version space of a single expression add

since add is a component satisfying the example. Blocks(C,I,✷u6) (where ✷u6 = {(1, 2) 7→ (1, 1)})
will include a version space of a tuple (Blocks(C,I,✷u1), Blocks(C,I,✷u1)) by the b_tuple rule.

When generating constraints, a cycle that leads to blocks of infinite lengthmay occur. For example,
wemay generate the following two constraints: S(Blocks(C,I,✷u1)) ⊆ CompoundBlocks(C,I,✷u)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

Inductive Synthesis of Structurally Recursive Functional Programs from Non-recursive Expressions 70:15

and S−1(Blocks(C,I,✷u)) ⊆ CompoundBlocks(C,I,✷u1) that can be used to generate blocks of
form S(S−1(S(S−1(· · ·))). In our implementation, we bound the maximum height of version spaces
to avoid generating blocks of infinite length.

We can derive the final version space of blocks for ✷u by finding the following smallest version
space satisfying the above constraints.

Blocks(C,I,✷u) =
⋃

{2, x.2, S(x.1), (add (
⋃

{x.1, S−1(x.2), · · · },
⋃

{x.1, S−1(x.2), · · · })), · · · }.

4.5 Pruning Infeasible Hypotheses Using Blocks

Finally, in this section, we describe theBlockConsistent procedure that prunes infeasible hypotheses
using the blocks generated by the BlockGen procedure.

Deriving Blocks from a Hypothesis by Unfolding We first describe how to obtain blocks
from an open hypothesis which we want to determine the feasibility of by a technique we call
unfolding. Suppose a currently considered hypothesis is P = rec f(x) = ebody. For each input
example i in the top-level input-output example ✷in , we perform symbolic evaluation (interleaved
with concrete evaluation) over ebody and obtain a block, which possibly contains holes. We call such
a block possibly with holes (resp. without holes) an open block (resp. closed block). We formalize
our symbolic evaluation via the transition relation e →P,i e ′ induced by the target hypothesis P
and the input i . The relation says that the expression e takes a single step to the expression e ′. The
transition relation is formally defined by the rules in Fig. 5. The rules u_ctor, u_dtor, u_tuple,
and u_proj perform symbolic evaluation on the arguments of constructor, destructor, tuple, and
projection expressions, respectively. u_app_l and u_app_r perform symbolic evaluation on the left
and right hand sides of applications. The most notable part is the remaining two rules. u_match
for match expressions concretely evaluates the scrutinee e of a given match expression with input
i . Then, a branch is chosen by the concrete value of the scrutinee. To obtain concrete values of
scrutinees, we require scrutinees not to contain recursive calls to the target function, which is
unknown yet. Therefore, any hypothesis containing a match expression that pattern matches on a
recursive call to the target function (called inside-out recursion [Osera 2015]) will get stuck and thus
will be determined to be infeasible. This means Candidate generator will never generate programs
with inside-out recursion. However, such programs can still be synthesized by our algorithm as
Bottom-up enumerator will eventually enumerate all programs. u_rec is a special rule for recursive
calls. Any recursive call to the target function f is replaced by the body of the function where
every occurrence of the parameter x is replaced by the argument expression. Note that there are no
transition rules for variables and holes. That is, every variable and hole in the hypothesis remains
unchanged.
Given the top-level input-output examples ✷in =

⋃
1≤j≤n{i j 7→ oj }, the set of open blocks

derivable from hypothesis P = rec f(x) = ebody (denoted BP) is defined as follows:

BP = {(i j ,oj) 7→ e | ebody →∗
P,i j

e, 1 ≤ j ≤ n}.

where →∗
P,i j

is the transitive closure of →P,i j . That is, with each input example, we apply the

transition rules till the end to obtain an open block.

Example 4.11. Recall the hypothesis P4 in the overview example in Section 2.

P4 = rec f (x) = match x.1 with Z -> x.1 | S _ -> add (f (S−1(x.1), x.2),✷5)

Using the rules in Fig. 5, we can derive an open block from P4 with input example i = (1, 2) as
follows:

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

70:16 Woosuk Lee and Hangyeol Cho

ei →P,i e ′i 1 ≤ i ≤ k

κ(e1, · · · , ei , · · · , ek) →P,i κ(e1, · · · , e
′
i , · · · , ek)

u_ctor
e →P,i e ′

κ−1(e) →P,i κ−1(e ′)
u_dtor

ei →P,i e ′i 1 ≤ i ≤ k

(e1, · · · , ei , · · · , ek) →P,i (e1, · · · , e
′
i , · · · , ek)

u_tuple
e →P,i e ′

e .n →P,i e ′.n
u_proj

e1 →P,i e ′1

e1 e2 →P,i e ′1 e2
u_app_l

e2 →P,i e ′2

e1 e2 →P,i e1 e
′
2

u_app_r

σ [x 7→ i] ⊢ e ⇒ κm _ 1 ≤ m ≤ k

match e with κj _ → ej
k →P,i em

u_match
f e →P,i ebody[e/x]

u_rec

Fig. 5. Rules for unfolding (symbolic evaluation interleaved with concrete evaluation) for deriving open blocks
from P = rec f(x) = ebody with input i

match x.1 with Z -> x.1 | S _ -> add (f (S−1(x.1), x.2),✷5)

→P4,i add (f (S−1(x.1), x.2),✷5) (By U_MATCH)

→P4,i add (match S−1(x.1) with Z -> S−1(x.1) | S _ -> add (f (S−2(x.1), x.2),✷5), ✷5)

(By U_REC, U_TUPLE, and U_APP_R)

→P4,i add (S−1(x.1), ✷5) (By U_MATCH, U_TUPLE, and U_APP_R)

Checking Feasibility of a Hypothesis We check the feasibility of a hypothesis P by checking
if it is block consistent with respect to the set B of closed blocks from the BlockGen procedure,
which is formally defined as follows:

Definition 4.12. Given the top-level input-output examples ✷in , a hypothesis P = rec f(x) = e is
block consistent with respect to a set B of blocks if and only if

∀i j 7→ oj ∈ ✷in . BP (i j ,oj) ∼ B(i j ,oj)

where ∼ is a binary relation over Exp and version spaces, which is defined in Fig. 6.

The relation ∼ relates an open block to a set of closed blocks. Specifically, for an open block e and
a version space of closed blocks ẽ , e ∼ ẽ holds if we can obtain an expression in ẽ by properly filling
each occurrence of the holes in e . Checking if e ∼ ẽ resembles conventional syntactic matching
between different expressions but with the following differences. Syntactic matching has as a goal
to determine whether two expressions can be made equal by searching for a proper substitution
from variables into expressions. For example, add (x, Z) can be matched with add (Z, Z) since we
can substitute x with Z. On the other hand, in our method, not variables but only holes are targets
for substitution. In addition, in contrast to syntactic matching that traverses two expressions, our
method simultaneously traverses one expression and a version space to figure out if an open block
can be matched with a closed block in the version space.

The first rule in Fig. 6 says that any hole can be matched with any expression in ẽ as long as ẽ is
not empty. The other rules recursively traverse the version space ẽ of blocks and check if e can be
matched with any expression in ẽ .
Finally, the BlockConsistent procedure is defined as follows:

BlockConsistent(P ,B,✷in) =

{
true (if ∀i j 7→ oj ∈ ✷in . BP (i j ,oj) ∼ B(i j ,oj))

false (otherwise)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

Inductive Synthesis of Structurally Recursive Functional Programs from Non-recursive Expressions 70:17

✷u ∼ ẽ
ẽ , ∅

∨
1≤m≤k e ∼ ẽm

e ∼
⋃
{ẽ1, · · · , ẽk }

∀1 ≤ m ≤ k . em ∼ ẽm

(e1, · · · , ek) ∼ (ẽ1, · · · , ẽk)

∀1 ≤ m ≤ k . em ∼ ẽm

κ(e1, · · · , ek) ∼ κ(ẽ1, · · · , ẽk)

e = κ−1(e ′) e ′ ∼ ẽ

e ∼ κ−1 (̃e)

e1 ∼ ẽ1 e2 ∼ ẽ2

e1 e2 ∼ (ẽ1 ẽ2)

e ∼ ẽ

e .n ∼ ẽ .n e ∼ ẽ
ẽ = e

Fig. 6. Matching rules for checking block consistency

Example 4.13. The following derivation tree shows how the open block in Example 4.11 can be
matched with the version space (add (

⋃
{Z, S−1(x.1)},

⋃
{x.2, S(x.1)}) using the rules in Fig. 6.

add ∼ add

S−1(x.1) ∼ S−1(x.1)

S−1(x.1) ∼
⋃

{Z, S−1(x.1)} ✷5 ∼
⋃

{x.2, S(x.1)}

(S−1(x.1),✷5) ∼ (
⋃

{Z, S−1(x.1)},
⋃

{x.2, S(x.1)})

add (S−1(x.1),✷5) ∼ (add (
⋃

{Z, S−1(x.1)},
⋃

{x.2, S(x.1)})

As already mentioned in Section 2, the block-based pruning presented may be unsound; a valid
open hypothesis that can be a solution in the future may be pruned by the block-based pruning.
Such a situation may occur if Block generator is not able to generate closed blocks for the valid
hypothesis due to a lack of components. However, as the component pool grows, such unsoundness
may be mitigated.

Please recall that even though the block-based pruning is unsound, our algorithm finds a solution
if exists by resorting to Bottom-up enumerator that will eventually generate a solution of finite size.

5 IMPLEMENTATION

In this section, we describe various implementation details of our synthesis algorithm.

5.1 Ensuring Termination of Block and Candidate Generation

In our implementation, to guarantee the termination of the BlockGen procedure and the Deduce
procedure, we limit the maximum number of subsequent steps of deduction to a certain number. In
other words, to avoid generating infinitely many open hypotheses from a given initial hypothesis,
we permit the Deduce procedure to be terminated after a certain number of steps of applications of
rules in Fig. 3. Because the BlockGen procedure relies on theDeduce procedure, this also guarantees
termination of the BlockGen procedure. Note that despite this finitization, the search space is still
infinite because there is no limit on the maximum component size (i.e., the component pool will
keep growing until a solution is found).

5.2 Program Selection

In order to synthesize likely programs, we utilizes a cost function: the cost of each candidate program
P = rec f(x) = e is determined by the cost of its body e (denoted C(e)) which is a non-negative
number. Costs of expressions satisfy the following constraints (some cases are omitted):

• C(e1 e2) > C(e1) + C(e2) • C(κ(e1, · · · , ek)) >
∑

1≤j≤k C(ej) • C(x) = 0

• C(e .n) = C(e) • C(κ−1(e)) = C(e)

Intuitively, we penalize the use of constructors (thereby constants) and prioritize the use of variables,
destructors, and projections. The reason for this is that they are used to extract subcomponents of
constructors, which are essentially the same as variables bound by patterns in match expressions.
For example, consider the solution Psol of the overview example problem in Section 2.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

70:18 Woosuk Lee and Hangyeol Cho

rec mul (x : nat, y : nat) : nat = match x with Z -> Z | S _ -> add (mul (S−1(x), y), y)

This program can be written as the following program by introducing a new variable x’ bound by
the pattern of S.

rec mul (x : nat, y : nat) : nat = match x with Z -> Z | S x' -> add (mul (x', y), y)

Note that S−1(x) and x’ play the same role. Therefore, destructors and projections can be understood
as variables in many cases, and prioritizing variables has been proved to be a good heuristic to
avoid overfitting [Feser et al. 2015; Gulwani 2011]. Lastly, in case of a tie, we pick a smaller program
in terms of AST size. This heuristic has also been popularly used in the majority of previous
approaches [Albarghouthi et al. 2013; Feser et al. 2015; Miltner et al. 2022; Wang et al. 2017].

5.3 Checking Block Consistency

We describe implementation details for improving the pruning power of the BlockConsistent
procedure. In Algo. 1, when choosing a hole in a hypothesis of amatch expression, we prefer holes
for base cases to ones for inductive cases. By filling holes for base cases first, we can effectively
prune infeasible recursive hypotheses. For example, suppose we encounter the following hypothesis
while synthesizing mul in Section 2.

P1 = rec mul (x : nat, y : nat) : nat = match x with Z -> ✷1 | S _ -> mul (S−1(x), ✷2)

Suppose we first fill the hole ✷2 with y, obtaining the following hypothesis.

P2 = rec mul (x : nat, y : nat) : nat = match x with Z -> ✷1 | S _ -> mul (S−1(x), y)

Note that this hypothesis cannot become a solution no matter what expression we put in the
remaining hole. To check block consistency, for every input, we will obtain the open block ✷1 as a
result of our symbolic evaluation. Although the hypothesis P2 is infeasible, because a hole can be
matched with any expression according to the rules in Fig. 6, the hypothesis will be determined to
be block consistent with respect to any set of blocks, and will not be pruned.
Now, suppose we first fill the hole ✷1 in P1 with x, obtaining the following hypothesis.

P3 = rec mul (x : nat, y : nat) : nat = match x with Z -> x | S _ -> mul (S−1(x), ✷2)

Note that this hypothesis also cannot become a solution no matter what expression we put in
the remaining hole. For every input, we will obtain a closed block x as a result of our symbolic
evaluation. Because x is not included in the blocks for the example (1, 2) 7→ 2, the hypothesis P3 is
determined to be block inconsistent and will be pruned.

5.4 Optimizations

We also utilize a few standard optimizations in prior work. For ease of presentation, we have
presented as if we do not type-check any of the expressions during the search. However, in our
implementation, we perform type-based pruning to generate only well-typed expressions, similarly
to prior work [Feser et al. 2015; Osera and Zdancewic 2015]. We also generate expressions in β-
normalη-long form as done in prior work [Frankle et al. 2016; Lubin et al. 2020; Osera and Zdancewic
2015]. Also, we apply constructor/destructor simplification [Lubin et al. 2020] to avoid generating
unnecessarily long programs containing sub-expressions of forms κ(κ−1 (· · ·)) or κ−1(κ (· · ·)) for
any constructor κ.

5.5 Using Another Version of the d_extcall Rule

As described in Section 4.3, the d_extcall rule in Fig. 3 may be unsound (i.e., some of generated
holes cannot be filled with any expression). This deduction unsoundness may lead to a scalability

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

Inductive Synthesis of Structurally Recursive Functional Programs from Non-recursive Expressions 70:19

issue by generating too many unsatisfiable holes if the number of examples is greater than a certain
threshold. In such a case, we use the following two rules instead of the d_extcall rule.

✷u =
⋃

1≤j≤n {i j 7→ oj } e1, e2 ∈ C ∀1 ≤ j ≤ n. σ [x 7→ i j] ⊢ e1 ⇒ дj

∀1 ≤ j ≤ n. σ [x 7→ i j] ⊢ e2 ⇒ vj ∀1 ≤ j ≤ n. дj
−1(oj) = vj ∈ I

e1 e2 ∈ Deduce(C,I,✷u)
d_extcall1

✷u =
⋃

1≤j≤n {i j 7→ oj } e1, e2 ∈ C ∀1 ≤ j ≤ n. σ [x 7→ i j] ⊢ e1 ⇒ дj

e2 contains recursive calls. ∀1 ≤ j ≤ n.∃v . дj
−1(oj) = v ∈ I

e1 e2 ∈ Deduce(C,I,✷u)
d_extcall2

Both rules use components to generate closed expressions without any holes. The difference
between the two rules is in whether a component for the argument part contains recursive calls.
The d_extcall2 rule considers every component cotaining recursive calls to be the potential
argument of a library function call. This is based on an optimistic assumption that any recursive
expression may be a proper argument (like the d_rec rule in Fig. 3). These rules do not generate
any unsatisfiable holes, but the search space explored in a single iteration of the main loop (lines 2
– 25 in Algo. 1) is smaller than the case where the d_extcall rule is used.

5.6 Finding a Solution vs. All Solutions

We allow the user to choose between finding all possible solutions synthesizable using some set of
components and picking the best one, and stopping the search as soon as a solution is found. This
allows the user to find a good balance between speed of synthesis and accuracy (i.e., the possibility
of generating intended programs). Finding all solutions and picking the best one only requires
a slight modification in Algo. 1 as follows: even if a solution is found on line 11, the main loop
continues to explore the search space until the queue becomes empty. Then, we pick the best one
among the multiple solutions found so far. In addition, we can further expedite the process of
finding a single solution with a slight modification in Fig. 3. Instead of including all components
consistent with a given set of input-output examples in the d_component rule, we just include a
single component whose score is the best among the satisfying components.

6 EVALUATION

We have implemented our approach in a tool Trio. Trio consists of about 4K lines of OCaml code.
We evaluate Trio on synthesis tasks used in prior work and on new tasks collected from an online
tutorial. We aim to answer the following research questions:

• RQ1: How does Trio perform on various synthesis tasks?
• RQ2: How does Trio compare with existing techniques for recursive program synthesis?
• RQ3: How effective are block-based pruning and library sampling for accelerating synthesis?

All of our experiments were conducted on a 2.0 GHz Intel Core i5 processor with 16 GB of
memory running macOS Big Sur. We set the timeout limit to 120 seconds for each synthesis task.

6.1 Experimental Setup

Benchmarks. We use 60 recursive functional programs. 45 out of 60 have been used to evaluate
prior work [Lubin et al. 2020; Miltner et al. 2022; Osera and Zdancewic 2015]. The remaining 15
programs are from the exercises in the official OCaml online tutorial and their slight variants. The
details can be found in Table 1.

For these benchmarks, we consider the following two classes of specifications to evaluate Trio
over different specifications.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

70:20 Woosuk Lee and Hangyeol Cho

Table 1. List of new 15 benchmarks collected from the exercises in the official OCaml online tutorial (https:
//ocaml.org/problems) and their variants.

Name External Operators Description

Arithmetic

nat_mul add Multiplication of two natural numbers.
nat_sub Subtraction of two natural numbers.
expr_boolean not, and, or Logical expression evaluator.
expr add, mul Calculator using addition and multiplication operators.
expr_sub add, mul, sub Calculator using addition, subtraction, and multiplication operators.
expr_div add, mul, sub, div Calculator using addition, subtraction, multiplication, and division operator.

Lists

list_dropeven is_even Drop the even number(s) in a list.
list_last2 Return the last two elements in a list.
list_make Return the 0 padded list of length n
list_range compare Return the sequence of the given numbers in descending order.

Trees

tree_height compare, max Return the height of a tree.
tree_balanced compare, max, tree_height, and Check whether a tree is height-balanced.
tree_lastleft Return the node at the left end of the tree.
tree_notexist compare, and Check if a number is in a tree
tree_sum add Return the sum of numbers in a tree.

• IO: We use input-output examples written by developers of SMyth [Lubin et al. 2020] and
Burst [Miltner et al. 2022].

• Ref: For 45 benchmarks, we use reference implementations from prior work written by
developers of Burst [Miltner et al. 2022]. For the other 15 benchmarks, we use reference
implementations from the official OCaml online and the ones written by us.

Baselines. We compare Trio to state-of-the-art tools for synthesizing recursive functional pro-
grams. SMyth [Lubin et al. 2020] performs top-down synthesis from input-output examples. It
performs partial evaluation to propagate constraints from partial programs to the remaining holes.
Burst [Miltner et al. 2022] performs bottom-up synthesis from input-output examples or logi-
cal specifications. Neither of them requires trace-complete specifications. We aim to confirm the
benefits of our bidirectional search strategy by comparing Trio against the top-down synthesizer
SMyth and the bottom-up synthesizer Burst.

6.2 Effectiveness of Trio for Input-Output Examples

We evaluate Trio on synthesis problems with IO specifications. The initial component size n for
Trio is set to be 6. For each instance, we measure the running time of Trio and the size of the
synthesized program.

The results are summarized in Table. 2. The column “Correct” shows if the synthesized program
is the one intended by the user. We manually checked if the synthesized program is semantically
equivalent to the known solution for each problem.
Trio outperforms the other baselines in terms of both the number of solved problems and

synthesis time. Trio can synthesize 59 out of 60 problems, with an average time of 1.9 seconds.
On the other hand, Burst and SMyth can synthesize 50 problems, with average times of 2.1 and
4.4 seconds, respectively. In addition, Trio is the fastest tool in 38 problems, whereas Burst and
SMyth are the fastest tools in 15 and 32 problems, respectively. 4

For every problem, the time taken for synthesizing blocks and constructing inverse maps is
negligible (usually less than a second).

We observe Burst and SMyth occasionally take a large amount of memory, whereas Trio only
requires a small amount of memory. While solving all of the tasks, the peak memory usage of
Burst is 1.3 GB and that of SMyth is 1.2 GB. On the other hand, Trio only requires 67 MB even in

4If there are ties in a synthesis problem, all tools with the same synthesis time are considered to be the fastest.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

https://ocaml.org/problems
https://ocaml.org/problems

Inductive Synthesis of Structurally Recursive Functional Programs from Non-recursive Expressions 70:21

Table 2. Results for the IO benchmark suite (with 12 easy problems omi�ed), where “Time” gives synthesis
time in seconds, and “Size” shows the size of the synthesized program (measured by number of AST nodes).
Synthesis time of the fastest tool for each problem is highlighted in bold.

Benchmark
Trio Burst SMyth

Time(s) Size Correct Time(s) Size Correct Time(s) Size Correct

bool_band 0.02 14 ✓ 0.02 14 ✓ 0.03 23 ✓

list_append 0.04 44 ✗ 0.15 31 ✓ 0.03 33 ✓

list_compress 0.13 56 ✓ 0.85 58 ✓ Timeout N/A N/A
list_concat 0.04 19 ✓ 0.03 19 ✓ 0.02 17 ✓

list_drop 0.03 31 ✓ 1.52 24 ✓ 0.04 32 ✓

list_even_parity 0.02 25 ✓ 0.03 23 ✓ 0.03 22 ✓

list_filter 0.03 47 ✗ 0.33 46 ✗ 0.07 44 ✗

list_fold 0.07 41 ✗ 0.13 43 ✗ 1.24 49 ✗

list_map 0.03 37 ✓ 0.03 37 ✓ 0.38 51 ✗

list_nth 0.04 33 ✓ 1.93 33 ✓ 0.04 34 ✓

list_pairwise_swap 0.03 38 ✓ 0.04 38 ✓ 0.04 27 ✓

list_rev_append 0.09 35 ✗ 1.03 22 ✓ 0.05 20 ✓

list_rev_fold 0.02 10 ✓ 0.03 10 ✓ 0.04 15 ✓

list_rev_snoc 0.04 18 ✓ 1.33 18 ✓ 0.02 16 ✓

list_rev_tailcall 0.02 37 ✗ 0.18 43 ✗ 0.02 33 ✓

list_snoc 0.03 36 ✓ 1.93 36 ✓ 0.03 37 ✓

list_sort_sorted_insert 0.04 18 ✓ 0.07 18 ✓ 0.02 16 ✓

list_sorted_insert 0.13 60 ✗ Timeout N/A N/A 1.44 55 ✓

list_stutter 0.02 23 ✓ 3.45 23 ✓ 0.02 21 ✓

list_sum 0.02 10 ✓ 0.07 10 ✓ 0.03 10 ✓

list_take 0.03 38 ✓ Timeout N/A N/A 0.03 38 ✓

nat_add 0.09 22 ✓ 0.03 22 ✓ 0.02 27 ✓

nat_iseven 0.02 16 ✓ 0.03 16 ✓ 0.02 13 ✓

nat_max 0.16 23 ✓ 0.18 23 ✓ 0.06 34 ✓

tree_binsert 0.61 87 ✓ 2.44 87 ✓ Timeout N/A N/A
tree_collect_leaves 0.07 27 ✓ 0.45 27 ✓ 0.04 24 ✓

tree_count_leaves 0.07 22 ✓ 0.18 22 ✓ 0.46 25 ✓

tree_count_nodes 0.17 22 ✓ 0.07 22 ✓ 0.16 20 ✓

tree_inorder 0.12 27 ✓ 7.89 27 ✓ 0.06 24 ✓

tree_map 0.06 49 ✓ 0.40 49 ✓ 0.92 61 ✓

tree_nodes_at_level 0.30 47 ✓ 32.63 47 ✓ Timeout N/A N/A
tree_postorder 0.48 32 ✓ 2.86 32 ✓ Timeout N/A N/A
tree_preorder 0.13 27 ✓ 0.10 27 ✓ 0.09 24 ✓

nat_mul 1.16 27 ✓ Timeout N/A N/A 105.53 31 ✓

nat_sub 0.09 29 ✓ 7.78 29 ✓ 0.04 30 ✓

expr_boolean 16.4 59 ✓ 0.61 52 ✗ Timeout N/A N/A
expr 0.77 36 ✓ Timeout N/A N/A Timeout N/A N/A
expr_sub 13.81 51 ✓ Timeout N/A N/A 10.79 58 ✗

expr_div Timeout N/A N/A Timeout N/A N/A Timeout N/A N/A
list_dropeven 0.03 28 ✓ Timeout N/A N/A 0.03 25 ✓

list_last2 0.03 40 ✓ 0.10 39 ✓ 0.07 29 ✓

list_make 0.02 14 ✓ 0.83 14 ✓ 0.01 13 ✓

list_range 0.18 60 ✓ Timeout N/A N/A Timeout N/A N/A
tree_balanced 75.40 45 ✗ Timeout N/A N/A Timeout N/A N/A
tree_height 4.48 36 ✗ Timeout N/A N/A 96.62 29 ✗

tree_lastleft 0.24 21 ✓ 0.03 21 ✓ 0.02 18 ✓

tree_notexist 0.42 79 ✓ 0.78 79 ✓ Timeout N/A N/A
tree_sum 0.47 28 ✓ 34.01 28 ✓ 0.44 25 ✓

Solved (# correct) 59 (51) 50 (46) 50 (45)
Timeout 1 10 10

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

70:22 Woosuk Lee and Hangyeol Cho

the worst case. On average, Burst and SMyth use 80 and 41 MB of memory respectively, whereas
Trio uses 22 MB. Thus we can conclude Trio is more memory efficient than the other baselines.

Analysis of Overfitting. We manually inspect the programs synthesized by the three tools to
investigate how they are prone to overfitting. 51 out of 59 programs (86%) synthesized by Trio are
the intended ones. 46 out of 50 programs (92%) and 45 out of 50 programs (90%) synthesized by
Burst and SMyth are the intended ones, respectively. Therefore, all the tools are roughly equal in
terms of solution quality.
We can mitigate overfitting by making Trio find all solutions that can be found with a current

set of components and choose the best one according to the cost described in Section 5.2. For
the 8 problems for which Trio synthesizes unintended programs, if Trio is configured to find all
solutions and pick the best one, it could find the desired programs for 5 problems at the cost of
reasonable overhead (ranging from a second to a few minutes). However, Trio cannot find the
desired solution of list_rev_tailcall because of our method for guaranteeing the termination
of synthesized programs (Section 5.1). list_rev_tailcall requires tail-recursive calls but our
current termination checker based on the default value order does not permit tail-recursive calls.
More specifically, list_rev_tailcall requires a recursive call on ([2],[1]) for input ([1;2],[]), but
our value ordering does not consider ([2],[1]) to be strictly smaller than ([1;2],[]). For the same
reason, Burst also fails to find the solution. This issue can be resolved by using a more sophisticated
termination checking method in the future. In the case of list_rev_append, the specification is
not constraining enough for finding the solution. In the experiment with reference implementations
based on CEGIS where infinitely many input-output examples can be provided, we confirm that
Trio successfully finds the desired solution.

Failure Analysis. We analyze one problem for which Trio timed out. The problem expr_div is
hard in that it requires complex pattern matching involving many external operators. It concerns
synthesizing a simple calculator with addition, subtraction, multiplication, and division. The
specification is given as follows:

type nat = Z | S of nat

type expr = NAT of nat | ADD of expr and expr | SUB of expr and expr

| MUL of expr and expr | DIV of expr and expr

rec add (x : nat, y : nat) : nat = ... rec sub (x : nat, y : nat) : nat = ...

rec mul (x : nat, y : nat) : nat = ... rec div (x : nat, y : nat) : nat = ...

rec eval (x : nat, y : nat) : nat = ✷in

where ✷in is the set of input-output examples {NAT 1 7→ 1, ADD(NAT 1, NAT 2) 7→ 3, · · · }, and add,
sub, mul, and div are the external operators. Finding the following solution is non-trivial because
there are extremely many possible combinations of recursive calls, external operators, and case
matching.

rec eval (x : expr) : nat =

match x with NAT n -> n

| ADD (x1, x2) -> add (eval x1, eval x2) | SUB (x1, x2) -> sub (eval x1, eval x2)

| MUL (x1, x2) -> mul (eval x1, eval x2) | DIV (x1, x2) -> div (eval x1, eval x2)

However, Trio can find the solution if the specification is restricted to addition, subtraction, and
multiplication (which is expr_sub) in 16 seconds. On the other hand, the other baselines fail to
solve all the problems that concern synthesizing calculators (i.e., expr, expr_sub, expr_div).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

Inductive Synthesis of Structurally Recursive Functional Programs from Non-recursive Expressions 70:23

Summary of Results. When synthesizing recursive programs from input-output examples,
Trio outperforms state-of-the-art baseline tools in terms of both synthesis time and memory usage.
Also, Trio solves harder synthesis problems beyond the reach of the baselines.

6.3 Effectiveness of Trio for Reference Implementations

In this section, we evaluate Trio on synthesis problems with Ref specifications. We follow the same
evaluation procedure as the evaluation of Burst [Miltner et al. 2022] for Ref specifications. The
authors of Burst integrated Burst and SMyth into a CEGIS loop and, for each candidate program
proposed by each tool, they use the verifier to determine whether the candidate is semantically
equivalent to the reference implementation. If not, a new input-output example comprising a
counter-example input generated by the verifier and its corresponding output is added 5. This
process is repeated until the desired program is found.

The goal of this experiment is to confirm how the tools deal with the random examples generated
by the verifier, rather than hand-crafted examples.

The results are summarized in Table 3. The column “# Iters” shows the number of CEGIS iterations
required until a solution is found. Trio also outperforms the other baselines in terms of both the
number of solved instances and synthesis time. Trio can synthesize 57 instances, with an average
time of 3.9 seconds and an average number of CEGIS iterations of 5.1. Burst can synthesize 54
instances, with an average time of 6.7 seconds and an average number of CEGIS iterations of 5.
SMyth can synthesize 39 instances, with an average time of 5.3 seconds and an average number of
CEGIS iterations of 4.6.

Overall these results suggest that Trio can deal better with random examples generated by the
verifier compared to the other baselines.

Failure Analysis. The reason for the timeout on list_rev_tailcall and expr_div is same as
the reason already described in the previous experiment with IO specifications. The solution to the
problem tree_balanced requires the use of deeply nested pattern matching in combination with
four external operators. Therefore, it is challenging to solve the problem for all three tools.

Summary of Results. Also when synthesizing recursive programs from reference implementa-
tions, Trio outperforms the other baselines in terms of both the number of solved instances and
synthesis time. The results suggest the Trio’s robustness to randomly given examples.

6.4 Ablation Study for Block-Based Pruning and Library Sampling

We now evaluate the effectiveness of the block-based pruning and library sampling techniques
used by Trio. For this purpose, we compare the performance of four variants of Trio, each using
a different combination: Trio with block-based pruning and library sampling, TrioB only with
block-based pruning, TrioL only with library sampling, and Trio−− with both techniques disabled.

Table 4 summarizes the results of this ablation study (more detailed results can be found in cactus
plots in Fig. 7). For each variant of Trio, we report the number of solved benchmarks with the
IO and Ref specifications respectively. In this experiment, we only consider the 15 newly added
benchmarks because we realize the other 45 benchmarks from prior work are easy, so that they
can be quickly solved by all the variants of Trio. As can be seen in the table, Trio with the two
techniques solves more benchmarks than the other three variants. Trio solved 93% of the new
benchmarks with IO specifications, whereas Trio−− could solve only 53% of the benchmarks. Such

5The authors of Burst use bounded testing instead of verification, and manually checked the semantic equivalence between
the generated programs and the reference implementations. We use the same method by reusing the artifacts of Burst.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

70:24 Woosuk Lee and Hangyeol Cho

Table 3. Results for the Ref benchmark suite where “# Iter” shows the number of CEGIS iterations.

Benchmark
Trio Burst SMyth

Time(s) Size # Iter Time(s) Size # Iter Time(s) Size # Iter

bool_band 0.02 14 3 0.02 14 3 0.02 23 3
list_append 0.52 31 6 0.37 31 7 0.43 33 8
list_compress 1.11 56 10 1.14 56 9 Timeout N/A N/A
list_concat 1.20 19 5 0.90 19 4 0.88 17 4
list_drop 0.48 31 5 0.59 31 6 Timeout N/A N/A
list_even_parity 0.12 25 5 0.12 23 6 0.14 22 6
list_filter 1.02 56 8 0.80 56 8 Timeout N/A N/A
list_fold 1.05 42 6 26.37 42 7 Timeout N/A N/A
list_map 0.72 37 6 0.61 37 4 Timeout N/A N/A
list_nth 0.41 33 6 0.35 33 7 0.42 34 5
list_pairwise_swap 0.41 38 7 0.34 38 6 Timeout N/A N/A
list_rev_append 0.96 22 5 10.31 22 5 Timeout N/A N/A
list_rev_fold 0.72 10 3 0.64 10 2 Timeout N/A N/A
list_rev_snoc 1.02 18 5 4.71 18 4 Timeout N/A N/A
list_rev_tailcall Timeout N/A N/A Timeout N/A N/A 0.44 33 9
list_snoc 0.36 36 3 0.42 36 3 0.47 36 7
list_sort_sorted_insert 1.32 18 6 1.49 18 5 1.31 16 6
list_sorted_insert 0.71 60 6 0.96 60 6 12.56 69 12
list_stutter 0.31 23 3 0.98 23 3 0.38 21 4
list_sum 0.72 10 2 0.67 10 2 0.67 10 2
list_take 0.32 38 8 12.65 38 9 0.42 38 7
nat_add 0.14 22 5 0.06 22 6 0.06 27 6
nat_iseven 0.02 16 4 0.02 16 4 0.02 13 4
nat_max 0.23 23 5 7.00 23 5 0.13 34 7
tree_binsert 6.59 87 6 16.51 87 8 Timeout N/A N/A
tree_collect_leaves 5.35 27 4 6.11 27 5 5.20 24 5
tree_count_leaves 5.34 22 4 5.89 22 4 5.67 25 4
tree_count_nodes 5.36 22 4 5.41 22 4 5.33 20 4
tree_inorder 7.69 27 4 10.10 27 5 7.65 24 6
tree_map 5.78 49 6 5.66 49 5 Timeout N/A N/A
tree_nodes_at_level 4.02 47 7 Timeout N/A N/A 21.99 43 5
tree_postorder 9.47 32 6 15.48 32 8 Timeout N/A N/A
tree_preorder 8.92 27 6 8.13 27 4 7.75 24 5
nat_mul 0.94 27 6 69.78 27 8 7.50 31 7
nat_sub 0.25 29 6 1.10 29 7 Timeout N/A N/A
expr_boolean 42.95 59 13 6.63 59 21 Timeout N/A N/A
expr 4.41 36 9 Timeout N/A N/A Timeout N/A N/A
expr_sub 62.76 51 12 Timeout N/A N/A Timeout N/A N/A
expr_div Timeout N/A N/A Timeout N/A N/A Timeout N/A N/A
list_dropeven 0.35 28 6 0.35 28 6 Timeout N/A N/A
list_last2 0.66 40 7 1.74 39 5 0.64 29 6
list_make 0.02 14 3 0.03 14 3 0.02 13 3
list_range 0.37 49 7 96.25 49 6 Timeout N/A N/A
tree_balanced Timeout N/A N/A Timeout N/A N/A Timeout N/A N/A
tree_height 9.62 23 6 7.84 22 6 9.14 20 5
tree_lastleft 8.49 21 6 7.70 21 4 7.03 18 5
tree_notexist 7.78 79 8 12.05 79 9 Timeout N/A N/A
tree_sum 9.78 28 5 9.66 28 5 7.42 25 5

Solved 57 54 39
Timeout 3 6 21

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

Inductive Synthesis of Structurally Recursive Functional Programs from Non-recursive Expressions 70:25

Fig. 7. Comparison of different variants of Trio.

Table 4. Number of instances that can be solved by four variants of Trio among 15 newly added benchmarks

Trio TrioB TrioL Trio−−

Solved (IO spec.) 14 (93%) 13 (87%) 9 (60%) 8 (53%)

Solved (Ref spec.) 13 (87%) 11 (73%) 10 (66%) 9 (60%)

a trend can also be observed in the reference implementation experiment. We notice the efficacy of
block-based pruning is higher than that of library sampling because the difference between Trio−−

and TrioB is more significant than the difference between Trio−− and TrioL .

6.5 Benefits of Our Method Compared to Prior Work

In this section, we analyze why our method outperforms the previous methods. As a representative
example, we investigate how the tools work for a simpler version of the expr benchmark where
Trio can quickly find the solution in contrast to the other baselines.

type nat = Z | S of nat

type expr = NAT of nat | ADD of expr and expr

rec add (x : nat, y : nat) : nat = ... rec mul (x : nat, y : nat) : nat = ...

rec eval (x : nat, y : nat) : nat = ✷in

where✷in = {i1 7→ 1, i2 7→ 4, i3 7→ 7}, i1 = NAT 1, i2 = ADD(NAT 3, NAT 1), and i3 = ADD(NAT 4, NAT 3).
The solution in our language (depicted in Fig. 2) is as follows:

rec eval (x : expr) : nat =

match x with NAT _ -> NAT−1(x) | ADD _ -> add (eval ADD−1(x).1, eval ADD−1(x).2)

Comparison to SMyth. Similarly to our method, SMyth explores the search space by per-
forming top-down propagation. There are two major differences between SMyth and our method.
First, whenever a hole is filled with some expression, SMyth “updates” the other remaining holes
according to the hole filling, so that the holes are more likely to be filled with the correct expressions.
Second, SMyth solely relies on a top-down search strategy without any bottom-up search. We
observe these two differences are the main reasons why SMyth fails to solve the benchmark.
Consider the following hypothesis generated by SMyth during the search.

P1 = rec eval (x : expr) : nat = match x with NAT _ -> ✷1 | ADD _ -> ✷2

where ✷1 = {i1 7→ 1}, ✷2 = {i2 7→ 4, i3 7→ 7}. SMyth further refines the hypothesis P1 by filling
the hole ✷2 with a recursive call to eval. Like Trio, SMyth enumerates structurally-decreasing

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

70:26 Woosuk Lee and Hangyeol Cho

recursive calls to guarantee the termination of synthesized programs. Suppose the following
hypothesis is generated.

P2 = rec eval (x : expr) : nat = match x with NAT _ -> ✷1 | ADD _ -> eval ADD−1(x).1

Obviously, the hypothesis P2 is not desired because it cannot be the solution. However, SMyth

cannot detect this problem for the following reason. As hole ✷2 is filled, SMyth updates the other
remaining hole. SMyth generates the following hypothesis.

P3 = rec eval (x : expr) : nat = match x with NAT _ -> ✷3 | ADD _ -> eval ADD−1(x).1

where ✷3 = ✷1 ∪ {NAT 3 7→ 4, NAT 4 7→ 7}. The additional examples {NAT 3 7→ 4, NAT 4 7→ 7} are
originated from the original examples {i2 7→ 4, i3 7→ 7} and partial evaluation of P2 with the input
examples. SMyth refines the hole ✷3 by generating the following hypothesis.

P4 = rec eval (x : expr) : nat =

match x with NAT _ ->

match S−1(x) with Z -> ✷4 | S _ -> ✷5

| ADD _ -> eval ADD−1(x).1

where ✷4 = {i1 7→ 1} and ✷5 = {NAT 3 7→ 4, NAT 4 7→ 7}. SMyth keeps refining this hypothesis,
which is fruitless. In summary, SMyth’s updating holes by partial evaluation sometimes makes the
search more difficult.
On the other hand, Trio can quickly identify the infeasibility of P2 as follows: Trio does not

update the other remaining hole ✷1 after filling ✷2. Then, the hole ✷1 can be easily filled with
NAT−1(x), generating the following program, which can be easily proved to be infeasible by concrete
evaluation.

P ′3 = rec eval (x : expr) : nat =

match x with NAT _ -> NAT−1(x) | ADD _ -> eval ADD−1(x).1

In addition, we note that another source of inefficiency of SMyth is that it redundantly generates
many semantically equivalent hypotheses. For instance, the followings are some of hypotheses
generated by SMyth by filling ✷1 in P1 with different expressions. The more library functions are
usable, the more redundant hypotheses are generated.

match x with NAT _ -> NAT−1(x) | ADD _ -> ✷2

match x with NAT _ -> add (NAT−1(x), 0) | ADD _ -> ✷2

match x with NAT _ -> 1 | ADD _ -> ✷2

match x with NAT _ -> add (1, (mul (0, 0))) | ADD _ -> ✷2

Note that the first two hypotheses and the last two hypotheses are semantically equivalent respec-
tively. However, Trio avoids generating such redundant hypotheses because Bottom-up enumerator

exploits observational equivalence to avoid generating multiple components of the same behaviors.

Comparison to Burst. Burst performs bottom-up synthesis with angelic execution. It first
synthesizes a program assuming any recursive calls to the function being synthesized angelically

behave to make the program correct. Then, it checks if the assumptions made in the previous step
are correct. If they are, the solution is found. Otherwise, those assumptions are refuted and never
made again by being added to the list of anti-specifications. This process is repeated, progressively
strengthening the specification of the target function and eventually leading to a solution.
Burst fails to find the solution because it runs into extensive backtracking (i.e., too many

steps of specification strengthening). Specifically, given the specification of the target function

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

Inductive Synthesis of Structurally Recursive Functional Programs from Non-recursive Expressions 70:27

eval i1 = 1 ∧ eval i2 = 4 ∧ eval i3 = 7 (which is from the three input-output examples), Burst
first enumerates the following candidate program.

rec eval (x : expr) : nat = match x with NAT _ -> NAT−1(x) | ADD _ -> eval ADD−1(x).1

Obviously, the above program does not satisfy the second and third input-output examples. How-
ever, at this stage, Burst generates a program assuming any recursive call to eval can return
anything to satisfy the constraints. The above program is generated by assuming eval (NAT 3) =

4 ∧ eval (NAT 4) = 7. Burst then checks if this assumption is correct. It clearly does not be-
cause eval (NAT 3) = 3 and eval (NAT 4) = 4. Then, it re-attempts synthesis with the following
strengthened specification.

eval i1 = 1 ∧ eval i2 = 4 ∧ eval i3 = 7 ∧ eval (NAT 3) = 4 ∧ eval (NAT 4) = 7.

After the search within a bounded space, Burst fails to find a program that satisfies the strengthened
specification. It concludes that the assumption made in the previous step is incorrect. Then, it
adds the negation of the assumption (i.e., ¬(eval (NAT 3) = 4 ∧ eval (NAT 4) = 7)) into the list
of anti-specifications, searches for a program that does not violate the anti-specifications and
generates the following program.

rec eval (x : expr) : nat =

match x with NAT _ -> NAT−1(x) | ADD _ -> S (S (eval ADD−1(x).1))

Obviously, this program also does not satisfy the original specification. However, it does not
violate the anti-specification because the above program is correct assuming eval (NAT 3) =

2 ∧ eval (NAT 4) = 5. Then, it re-attempts synthesis with the following strengthened specification.

eval i1 = 1 ∧ eval i2 = 4 ∧ eval i3 = 7 ∧ ¬(eval (NAT 3) = 4 ∧ eval (NAT 4) = 7)

∧eval (NAT 3) = 2 ∧ eval (NAT 4) = 5

Again, after a bounded search, Burst fails to find a program that satisfies the strengthened spec-
ification. It concludes that the assumption made in the previous step is incorrect. Then, Burst
refutes the assumption, increasing the list of anti-specifications. In this manner, Burst initially
overapproximates the specification of the target function and then refines it by repeatedly adding
anti-specifications. However, because the space of possible anti-specifications is too large, this
method is not effective.

7 RELATED WORK

We divide the prior work related to our paper into three categories: (1) synthesis of functional
recursive programs, (2) version-space-based synthesis, (3) bidirectional search-based synthesis. We
elaborate on these categories of work. For a broader survey of program synthesis, we refer the
reader to [Gulwani et al. 2017].

Synthesis of Recursive Programs. There is a large body of work on the synthesis of functional
recursive programs. Various approaches have been proposed to synthesize functional recursive
programs from input-output examples [Feser et al. 2015; Lubin et al. 2020; Osera and Zdancewic
2015], refinement types [Polikarpova et al. 2016], logical specifications [Itzhaky et al. 2021; Kneuss
et al. 2013], and a reference implementation with desired type invariants [Farzan and Nicolet
2021]. In the following, we will mainly focus on the prior work of inductive synthesis of functional
recursive programs.
Thesys [Summers 1986] and its reincarnation Igor2 [Kitzelmann and Schmid 2006] are similar

to ours in the sense that they stage synthesis into (1) non-recursive program synthesis and (2)
recursive program synthesis. They first synthesize non-recursive programs for the given example

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

70:28 Woosuk Lee and Hangyeol Cho

by a top-down search. Then, by identifying syntactic patterns, these systems “fold” the synthesized
non-recursive programs into a recursive one. Similarly, Cypress [Itzhaky et al. 2021], which is for
synthesizing recursive programs from separation logic specifications, also generates a satisfying
straight-line program, then folds it into a generalized recursive one. Contrary to these systems,
instead of exploring the space of possible foldings, which is prohibitively large in our case, we
prune the search space of recursive programs by “unfolding” each candidate into a non-recursive
program; we check if it can be one of the non-recursive programs synthesized earlier.
The recursion-free approximation in Synduce [Farzan and Nicolet 2021] is related to our block-

based pruning. Synduce is a system for synthesizing a recursive program from a reference imple-
mentation and type invariants. It also synthesizes recursive programs from non-recursive programs.
It eliminates recursion in a given specification by replacing each recursive call with a variable,
synthesizes a satisfying non-recursive program, and then changes the variables back to their cor-
responding recursive calls. This method differs from ours in that we do not directly construct
a recursive solution from a non-recursive one. Instead, we prune the search space of recursive
programs using non-recursive ones.
Myth [Osera and Zdancewic 2015] and λ2 [Feser et al. 2015] pioneered the idea of top-down

deductive search for functional recursive programs which hypothesizes the overall structure of
a program and then tries to synthesize the subcomponents. The major shortcoming of Myth

is the requirement for trace-complete specifications that our system does not need. The major
shortcoming of λ2 is that it only applies deductive reasoning to a fixed set of primitive list and tree
combinators such as filter and map. Our deductive reasoning is not limited to a certain set of
operators but can be applied to any usable external operators thanks to the use of inverse maps.
SMyth [Lubin et al. 2020] and Burst [Miltner et al. 2022] are recently proposed systems for recur-

sive program synthesis that do not require trace-complete specifications. SMyth explores the search
space top-down and generates partial programs with holes. To alleviate the trace-completeness
requirement, for each partial program, SMyth performs partial evaluation to propagate example
constraints over the entire program into holes in it. However, the constraint propagation process is
complex in design, thereby being costly when it comes to large programs with complex control flow.
On the other hand, our tool can quickly identify infeasible candidates, significantly outperforming
SMyth as already shown in Section 6.5. Burst performs bottom-up synthesis with angelic execu-

tion as already explained in Section 6.5. Burst inherits scalability issues of the prior bottom-up
strategies where a goal-directed search in top-down strategies is missing. In contrast, our method
combines top-down and bottom-up synthesis to overcome the limitation of bottom-up synthesis.
In addition, Burst may run into the problem of extensive backtracking as explained in Section 6.5
whereas we do not have such an issue since we explore the full search space of recursive programs
without any refinement process.

Eguchi et al. [Eguchi et al. 2018] have proposed a technique for synthesizing both a functional
program and recursive helper functions from refinement types. Their method infers specifications
of recursive helper functions by trying with a number of predefined templates. Our work focuses
on synthesizing the target function when library functions are given. We expect our work can be
combined with their work to synthesize the target function with a mixture of known and unknown
library functions.

Version Space-Based Synthesis. To efficiently represent the set of all programs correct with
respect to a given specification, the prior version space approaches to synthesis use a space-efficient
data structure. FlashFill [Gulwani 2011] firstly used e-graphs like version space representations
to efficiently represent the set of all correct programs and choose the best one among them.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

Inductive Synthesis of Structurally Recursive Functional Programs from Non-recursive Expressions 70:29

This method is generalized in the FlashMeta [Polozov and Gulwani 2015] framework, and its
instantiations [Kini and Gulwani 2015; Le and Gulwani 2014; Rolim et al. 2017] have shown
successful applications of the version space approach to synthesis in various domains. These
methods construct version spaces top-down as we do in our system. There have been also previous
methods that construct version spaces in a bottom-up fashion. Finite tree automata (FTAs) have
been used to represent version spaces of functional programs [Miltner et al. 2022; Wang et al. 2017].
In particular, Burst [Miltner et al. 2022] uses FTAs to represent the version space of recursive
functional programs.

The major difference between our method and these previous methods is that we do not use the
version space representation directly for finding a solution. Instead, we construct the version space
of non-recursive programs to prune the search space of recursive programs.
DreamCoder [Ellis et al. 2021] also indirectly uses version space representations for synthesis.

DreamCoder stores a large number of possible refactorings to each training program into version
space representations. Those refactorings expose common sub-expressions that correspond to li-
brary functions, whichDreamCoder can use for other synthesis tasks. In contrast toDreamCoder,
we construct and use version spaces within a single synthesis task rather than across different
tasks.

Combining Top-Down and Bottom-Up Search for Recursive Program Synthesis. The
idea of combining top-down and bottom-up synthesis often appears in prior work on recursive
program synthesis. λ2 [Feser et al. 2015] enumerates open hypotheses (i.e., partial programs with
holes) by a top-down deductive search and closed hypotheses by a bottom-up search. Such closed
hypotheses are used to fill holes in open hypotheses. Myth [Osera and Zdancewic 2015] also
enumerates expressions bottom-up up to a certain size, and uses them during a top-down deductive
search.

Our work is different from these methods in that (1) we use bottom-up enumeration for collecting
not only sub-expressions but also inverse maps that enable top-down propagation for arbitrary
external operators, and (2) we use a combination of top-down and bottom-up synthesis not only
for finding a recursive solution but also for finding all non-recursive blocks.

8 CONCLUSION

We have presented a new technique for synthesizing recursive functional programs from input-
output examples. Our approach differs from prior work in that we first synthesize satisfying blocks
(straight-line programs) for each input-output example, and then we prune the space of recursive
programs by removing candidates that are inconsistent with the blocks. Additionally, we propose a
technique we call library sampling, which accelerates deductive reasoning over a library by using
sampled input-output behaviors of library functions. We have implemented our algorithm in a tool
called Trio. Our comparison against the state-of-the-art synthesizers shows that Trio advances
the state-of-the-art of inductive synthesis of recursive functional programs.

Data-Availability Statement. The artifact is available at Zenodo [Lee and Cho 2022].

ACKNOWLEDGMENTS

We thank the reviewers for insightful comments. This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1C1C1014518,
2021R1A5A1021944) and Institute for Information & Communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2021-0-00758, 2022-0-00995).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

70:30 Woosuk Lee and Hangyeol Cho

REFERENCES

Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Recursive Program Synthesis. In Proceedings of the 25th

International Conference on Computer Aided Verification (Saint Petersburg, Russia) (CAV’13).
Shingo Eguchi, Naoki Kobayashi, and Takeshi Tsukada. 2018. Automated Synthesis of Functional Programs with Auxiliary

Functions. In Programming Languages and Systems - 16th Asian Symposium, APLAS 2018, Wellington, New Zealand,

December 2-6, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 11275), Sukyoung Ryu (Ed.). Springer, 223–241.
https://doi.org/10.1007/978-3-030-02768-1_13

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke Hewitt, Luc Cary, Armando Solar-
Lezama, and Joshua B. Tenenbaum. 2021. DreamCoder: Bootstrapping Inductive Program Synthesis with Wake-Sleep
Library Learning. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design

and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York, NY, USA, 835–850.
https://doi.org/10.1145/3453483.3454080

Azadeh Farzan and Victor Nicolet. 2021. Counterexample-Guided Partial Bounding for Recursive Function Synthesis. In
Computer Aided Verification - 33rd International Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part

I (Lecture Notes in Computer Science, Vol. 12759), Alexandra Silva and K. Rustan M. Leino (Eds.). Springer, 832–855.
https://doi.org/10.1007/978-3-030-81685-8_39

John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Structure Transformations from Input-Output
Examples. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Portland, OR, USA) (PLDI’15). Association for Computing Machinery, New York, NY, USA, 229–239. https://doi.org/10.
1145/2737924.2737977

Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic. 2016. Example-Directed Synthesis: A Type-
Theoretic Interpretation. In Proceedings of the 43rd Annual ACMSIGPLAN-SIGACT Symposium on Principles of Programming

Languages (St. Petersburg, FL, USA) (POPL ’16). Association for Computing Machinery, New York, NY, USA, 802–815.
https://doi.org/10.1145/2837614.2837629

Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-output Examples. In Proceedings of the 38th

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL ’11).
Sumit Gulwani, Alex Polozov, and Rishabh Singh. 2017. Program Synthesis. Vol. 4. NOW. 1–119 pages. https://www.

microsoft.com/en-us/research/publication/program-synthesis/
Shachar Itzhaky, Hila Peleg, Nadia Polikarpova, Reuben N. S. Rowe, and Ilya Sergey. 2021. Cyclic Program Synthesis. In

Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation

(Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York, NY, USA, 944âĂŞ959. https://doi.org/
10.1145/3453483.3454087

Dileep Kini and Sumit Gulwani. 2015. FlashNormalize: Programming by Examples for Text Normalization. In Proceedings of

the 24th International Conference on Artificial Intelligence (Buenos Aires, Argentina) (IJCAI’15). AAAI Press, 776–783.
Emanuel Kitzelmann and Ute Schmid. 2006. Inductive Synthesis of Functional Programs: An Explanation Based Generaliza-

tion Approach. Journal of Machine Learning Research 7, 15 (2006), 429–454. http://jmlr.org/papers/v7/kitzelmann06a.html
Etienne Kneuss, Ivan Kuraj, Viktor Kuncak, and Philippe Suter. 2013. Synthesis modulo Recursive Functions. In Proceedings

of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applications

(Indianapolis, Indiana, USA) (OOPSLA ’13). Association for Computing Machinery, New York, NY, USA, 407–426.
https://doi.org/10.1145/2509136.2509555

Vu Le and Sumit Gulwani. 2014. FlashExtract: A Framework for Data Extraction by Examples. In Proceedings of the 35th

ACM SIGPLAN Conference on Programming Language Design and Implementation (Edinburgh, United Kingdom) (PLDI
’14).

Woosuk Lee. 2021. Combining the top-down propagation and bottom-up enumeration for inductive program synthesis.
Proceedings of the ACM on Programming Languages 5, POPL (2021), 1–28.

Woosuk Lee and Hangyeol Cho. 2022. Artifact of Inductive Synthesis of Structurally Recursive Functional Programs from
Non-Recursive Expressions. https://doi.org/10.5281/zenodo.7320806

Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh. 2020. Program sketching with live bidirectional evaluation.
Proceedings of the ACM on Programming Languages 4, ICFP (2020), 1–29.

Anders Miltner, Adrian Trejo Nuñez, Ana Brendel, Swarat Chaudhuri, and Isil Dillig. 2022. Bottom-up Synthesis of Recursive
Functional Programs Using Angelic Execution. Proc. ACM Program. Lang. 6, POPL, Article 21 (jan 2022), 29 pages.
https://doi.org/10.1145/3498682

Peter-Michael Osera. 2015. Program Synthesis With Types. (01 2015).
Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-directed program synthesis. ACM SIGPLAN Notices 50,

6 (2015), 619–630.
Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program Synthesis from Polymorphic Refinement

Types. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

https://doi.org/10.1007/978-3-030-02768-1_13
https://doi.org/10.1145/3453483.3454080
https://doi.org/10.1007/978-3-030-81685-8_39
https://doi.org/10.1145/2737924.2737977
https://doi.org/10.1145/2737924.2737977
https://doi.org/10.1145/2837614.2837629
https://www.microsoft.com/en-us/research/publication/program-synthesis/
https://www.microsoft.com/en-us/research/publication/program-synthesis/
https://doi.org/10.1145/3453483.3454087
https://doi.org/10.1145/3453483.3454087
http://jmlr.org/papers/v7/kitzelmann06a.html
https://doi.org/10.1145/2509136.2509555
https://doi.org/10.5281/zenodo.7320806
https://doi.org/10.1145/3498682

Inductive Synthesis of Structurally Recursive Functional Programs from Non-recursive Expressions 70:31

(Santa Barbara, CA, USA) (PLDI ’16). Association for Computing Machinery, New York, NY, USA, 522–538. https:
//doi.org/10.1145/2908080.2908093

Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A Framework for Inductive Program Synthesis. In Proceedings of

the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications

(Pittsburgh, PA, USA) (OOPSLA 2015). Association for Computing Machinery, New York, NY, USA, 107–126. https:
//doi.org/10.1145/2814270.2814310

Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit Gulwani, Rohit Gheyi, Ryo Suzuki, and Björn
Hartmann. 2017. Learning Syntactic Program Transformations from Examples. In Proceedings of the 39th International

Conference on Software Engineering (Buenos Aires, Argentina) (ICSE’17). IEEE Press, 404–415. https://doi.org/10.1109/
ICSE.2017.44

Phillip D. Summers. 1986. A Methodology for LISP Program Construction from Examples. In Readings in Artificial

Intelligence and Software Engineering, Charles Rich and Richard C. Waters (Eds.). Morgan Kaufmann, 309–316. https:
//doi.org/10.1016/B978-0-934613-12-5.50028-8

Xinyu Wang, Isil Dillig, and Rishabh Singh. 2017. Program Synthesis Using Abstraction Refinement. Proc. ACM Program.

Lang. 2, POPL, Article 63 (Dec. 2017), 30 pages. https://doi.org/10.1145/3158151

Received 2022-07-07; accepted 2022-11-07

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 70. Publication date: January 2023.

https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/2814270.2814310
https://doi.org/10.1145/2814270.2814310
https://doi.org/10.1109/ICSE.2017.44
https://doi.org/10.1109/ICSE.2017.44
https://doi.org/10.1016/B978-0-934613-12-5.50028-8
https://doi.org/10.1016/B978-0-934613-12-5.50028-8
https://doi.org/10.1145/3158151

	Abstract
	1 Introduction
	2 Overview
	3 Problem Definition
	3.1 Language
	3.2 Notations
	3.3 Problem Definition

	4 Algorithm
	4.1 Overall Algorithm
	4.2 Getting Inverse Maps of External Functions by Library Sampling
	4.3 The Deduce Procedure
	4.4 Constructing Blocks From Each Input-Output Example
	4.5 Pruning Infeasible Hypotheses Using Blocks

	5 Implementation
	5.1 Ensuring Termination of Block and Candidate Generation
	5.2 Program Selection
	5.3 Checking Block Consistency
	5.4 Optimizations
	5.5 Using Another Version of the d_extcall Rule
	5.6 Finding a Solution vs. All Solutions

	6 Evaluation
	6.1 Experimental Setup
	6.2 Effectiveness of Trio for Input-Output Examples
	6.3 Effectiveness of Trio for Reference Implementations
	6.4 Ablation Study for Block-Based Pruning and Library Sampling
	6.5 Benefits of Our Method Compared to Prior Work

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

