
54

Combining the Top-Down Propagation and Bottom-Up

Enumeration for Inductive Program Synthesis

WOOSUK LEE, Hanyang University, South Korea

We present an effective method for scalable and general-purpose inductive program synthesis. There have

been two main approaches for inductive synthesis: enumerative search, which repeatedly enumerates possible

candidate programs, and the top-down propagation (TDP), which recursively decomposes a given large syn-

thesis problem into smaller subproblems. Enumerative search is generally applicable but limited in scalability,

and the TDP is efficient but only works for special grammars or applications. In this paper, we synergistically

combine the two approaches. We generate small program subexpressions via enumerative search and put

them together into the desired program by using the TDP. Enumerative search enables to bring the power of

TDP into arbitrary grammars, and the TDP helps to overcome the limited scalability of enumerative search.

We apply our approach to a standard formulation, syntax-guided synthesis (SyGuS), thereby supporting a

broad class of inductive synthesis problems. We have implemented our approach in a tool called Duet and

evaluate it on SyGuS benchmark problems from various domains. We show that Duet achieves significant

performance gains over existing general-purpose as well as domain-specific synthesizers.

CCS Concepts: • Software and its engineering→ Programming by example; Domain specific languages.

Additional Key Words and Phrases: Programming by example, Syntax-guided Synthesis

ACM Reference Format:

Woosuk Lee. 2021. Combining the Top-Down Propagation and Bottom-Up Enumeration for Inductive Program

Synthesis. Proc. ACM Program. Lang. 5, POPL, Article 54 (January 2021), 28 pages. https://doi.org/10.1145/

3434335

1 INTRODUCTION

Inductive program synthesis aims to generate a program in a domain-specific language (DSL) that
works correctly on an inductive specification. Here, an inductive specification consists of a set
of input-output examples of the form a 7→ b, where a is input, and b is the output of the desired
program on input a. Since input-output examples are readily available and appealing to end-users
who need to perform programming tasks but lack the expertise to write code, inductive synthesis
has gained increasing academic and industrial attention. The FlashFill [Gulwani 2011] feature
of Microsoft Excel is one of the most well-known examples of automated end-user programming.
Inductive synthesis techniques have also been applied to other domains such as circuit transforma-
tion [Eldib et al. 2016; Lee et al. 2020], super optimization [Phothilimthana et al. 2016], program
repair [Mechtaev et al. 2016], among many others.
There is a dichotomy in inductive synthesis strategies: general-purpose strategies which work

for arbitrary DSLs, and domain-specific strategies that are only applicable to specific kinds of DSLs.
General-purpose strategies tend to be less efficient than domain-specific ones. Since synthesis
problems are notoriously difficult combinatorial search problems [Caulfield et al. 2015], speeding

Author’s address: Woosuk Lee, College of Computing, Hanyang University, South Korea, woosuk@hanyang.ac.kr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/1-ART54

https://doi.org/10.1145/3434335

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 54. Publication date: January 2021.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3434335
https://doi.org/10.1145/3434335
https://doi.org/10.1145/3434335

54:2 Woosuk Lee

up synthesis often requires domain knowledge in various forms, thereby limiting the application
scope within specific domains.

The enumerative search strategies are generally applicable to arbitrary DSLs, but inefficient. The
strategies traverse the search space following a specific order. The simplest one is the bottom-up

enumerative search [Alur et al. 2017; Udupa et al. 2013]. It begins with constructing small programs
and then putting together progressively larger programs until a correct program is found. To prune
the search space, it employs a general optimization technique using observational equivalence with
respect to input examples. Despite the optimization, however, the enumerative strategy is difficult
to scale to large programs, because the search space grows exponentially with the size of the
program.

The top-down propagation (TDP) (also called top-down deductive search [Polozov and Gulwani
2015]) strategies ś also adopted by FlashFillś are efficient but not generally applicable to arbitrary
DSLs. A given synthesis problem is recursively decomposed into multiple subproblems and their
solutions are combined. In particular, after hypothetically deciding an overall structure of the
target program expression satisfying certain input-output examples, for example F (e1, · · · , ek),
specialized rules are used to deduce new input-output examples that should be propagated to its
subexpressions e1, · · · , ek . Such rules for deducing specifications on subexpressions are often called
inverse semantics operators. The TDP is not directly applicable when there are (virtually) infinitely
many possible argument values that can result in the desired output. For instance, suppose we try
to synthesize an expression of the form e1 ⊕ e2 satisfying input-output examples where ⊕ denotes
the 64-bit bitwise XOR operator. To deduce specifications on the subexpressions e1 and e2, we need
to enumerate all possible 264 argument values. To finitize or further narrow down the value space,
the previous work adopts either of the following two approaches or both:

• Using domain-specific knowledge about operators in the underlying DSL. For instance, suppose
we try to synthesize a list manipulating expression of kind map(f ,x) satisfying a specification
[1, 2] 7→ [3, 4] where x denotes input and f is an unknown function subexpression to be
synthesized. Note that the space of values for f is infinite. Considering the property of
map, we can deduce two new input-output examples for f : 1 7→ 3 and 2 7→ 4. Inductive
synthesizersMyth [Frankle et al. 2016] and λ2 [Feser et al. 2015] adopt this approach.

• Restricting the expressivity of the underlying DSL. FlashFill adopts this approach. The
FlashFill DSL grammar restricts the use of substring extraction operator Substring, which
takes a string and two specified indices. The grammar only allows the Substring operator
to take input examples, preventing the other operators from being nested. This syntactic
restriction allows deducing two missing specified indices for a given specification by identi-
fying the starting and ending positions of the desired output in the input example. In general,
this approach requires a great deal of domain expertise to achieve balanced expressivity of
the underlying DSL [Gulwani 2016]: the DSL should be expressive enough for practical uses
while being restricted enough to enable the TDP.

Since the above both approaches require domain knowledge, the TDP has been customized for
specific application domains such as string/list manipulation, data extraction [Le and Gulwani
2014], format normalization [Kini and Gulwani 2015], and program transformation [Rolim et al.
2017].
In this paper, we propose a general approach to make the TDP applicable to arbitrary DSLs,

thereby enabling a more scalable general-purpose synthesis strategy. Our key observation is that
while the bottom-up enumerative search is not scalable enough to find a large solution expression,
it can at least quickly enumerate its small subexpressions. Based on this insight, after enumerating

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 54. Publication date: January 2021.

Combining the Top-Down Propagation and Bottom-Up Enumeration for Inductive Program Synthesis 54:3

Failure

Synthesis specification

Generator Composer
Initial component size n

Success

Final program

Increased n

Components of size ≤ n

Bottom-up
Enumeration

Top-down
Propagation

Fig. 1. High-level architecture of our synthesis algorithm.

small expressions and obtaining a set of values to which the expressions evaluate on given input
examples, we confine the value space of unconstrained arguments to be the set.
Fig. 1 depicts the high-level architecture of our synthesis algorithm based on the synergistic

combination of the TDP and bottom-up enumeration. Our algorithm consists of two phases:
component generation and composition. Given an inductive synthesis problem and the initial size of
component expressions n, we first construct a component library by generating expressions of size
≤ n using the bottom-up enumeration. Through the TDP, we attempt to construct a solution from
the components. Our TDP repeatedly decomposes a given synthesis problem to subproblems, each
of which is further split, or directly solved by using an expression in the component library. The
desired program may not be synthesized if the given set of components is insufficient. Then, we
augment the component library by adding larger expressions and attempt to construct a solution
again. This process is repeated until a solution is found.

To make the approach feasible, we had to address two key challenges: 1) the composition phase
should efficiently determine unrealizability in case of insufficient component expressions so that
more component expressions can be promptly generated, 2) the number of component expressions
should be controlled since it determines the computational cost of the composition phase. We
address the first challenge by designing an efficient but incomplete composition algorithm; our
composition algorithm may fail to construct a solution even with enough components available.
This incompleteness does not harm the search completeness of the overall algorithm though because
the enumerative step will eventually enumerate a solution of finite size. We address the second
challenge by exploiting the existing pruning technique based on observational equivalence which
reduces the number of component expressions by removing redundant expressions.

While our approach is generally applicable to any kind of language, we have applied the approach
to the SyGuS [Alur et al. 2013] specification language. SyGuS is a standard formation that has
established various synthesis benchmarks through annual competitions. SyGuS employs a formal
grammar to describe the space of possible programs. Such a grammar is expressible in some SMT
theory. We devise inverse semantics operators specialized for the operators in theories of strings,
bitvectors, linear integer arithmetics (LIA), and SAT. By targetting the standard formulation, our
synthesis algorithm is applicable for a broad class of SyGuS problems with arbitrary grammars in
those theories.
We implemented our approach in a tool called Duet. We evaluate Duet on 1,536 benchmark

problems from three widely applicable domains: string manipulation (end-user programming
problems), bitvector manipulation (efficient low-level algorithms), and circuit transformation
(attack-resistant crypto circuits and optimized homomorphic evaluation circuits).

We compared Duet against the state-of-the-art SyGuS solvers: EUSolver and CVC4. Duet
is able to solve 1,443 problems in less than 30 seconds on average per problem, compared to

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 54. Publication date: January 2021.

54:4 Woosuk Lee

only 1,258 and 987 by EUSolver and CVC4 using 2 and 5 minutes on average, respectively. We
also compare Duet against the state-of-the-art solver Euphony guided by probabilistic models.
Euphony outperforms Duet in the bitvector domain, but performs worse than Duet in the other
domains, and overall, Duet is 9x faster on average, solving more problems than Euphony. Duet
thus provides significant performance gains that are complementary to those achieved by existing
synthesizers.
We summarize the main contributions of our work:

• A novel and general approach for efficient inductive synthesis: we bring the power of the
TDP to synthesis problems with arbitrary DSLs by incorporating it with the bottom-up
enumerative search.

• An efficient inductive synthesis algorithm usable for a wide range of inductive synthesis
problems: by targetting the SyGuS specification language, our algorithm can be used for
inductive SyGuS problems with arbitrary grammars. The algorithm is guaranteed to find a
correct solution if exists.

• Inverse semantics operators for theories of strings, bitvectors, LIA and SAT: the inverse
semantics operators for SyGuS are not only a core part of our synthesis system but also
can be a useful reference for applying our approach to languages other than the SyGuS
specification language.

• Implementation and evaluation on benchmark problems from a variety of widely applicable
domains: the results demonstrate significant performance gains over existing synthesis
techniques.

2 OVERVIEW

We illustrate existing approaches and our method on the problem of synthesizing a string manip-
ulating program. The desired string-manipulating program is a function f that takes as input a
string of a phone number (denoted x) and outputs one in a different format by removing a leading
space and a plus symbol, replacing all hyphens and spaces in the middle with dots, and adding a
dot at the end. For example, given a string ł +6 775-969-238ž, the function is supposed to return
ł6.775.969.238.ž. 1

We formulate this problem as an instance of the syntax-guided synthesis (SyGuS) problem [Alur
et al. 2013]. Each formulation comprises a syntactic specification, in the form of a regular-tree

grammar that confines the space of possible programs, and a semantic specification, in the form of
a logical formula which defines a correctness condition of the desired program.
The syntactic specification for f is the grammar:

S → x | ł ž | ł-ž | ł.ž | SubStr(S, I , I) | Rep(S, S, S) | ConCat(S, S) | · · ·

I → 1 | 2 | I − I | Length(S) | · · ·

where S is the start non-terminal symbol, and the operators are the ones supported in the the-
ory of strings. ConCat and Length are the string concatenation/length operators, respectively,
SubStr(s, i, j) returns the substring of s that begins at index i and extends to the length j(> 0), and
Rep(s, t1, t2) returns a new string where the first occurrence of t1 in s is replaced by t2.
The semantic specification for f follows the programming by example (PBE) paradigm and

comprises input-output examples given as a logical formula:

f (ł +6 775-969-238ž︸ ︷︷ ︸
i1

) = ł6.775.969.238.ž︸ ︷︷ ︸
o1

∧f (ł +82 10-56-80ž︸ ︷︷ ︸
i2

) = ł82.10.56.80.ž︸ ︷︷ ︸
o2

.

1A slight variant of the phone-9.sl benchmark used in the annual SyGuS competition.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 54. Publication date: January 2021.

Combining the Top-Down Propagation and Bottom-Up Enumeration for Inductive Program Synthesis 54:5

2 Let us denote the two input and output examples by i1, i2 and o1,o2 respectively. Each expression e
in the grammar produces a vector of outputs ⟨⟦e⟧ (i1), ⟦e⟧ (i2)⟩ on the input examples. The smallest
solution that produces ⟨o1,o2⟩ is

Rep(

e
︷ ︸︸ ︷
Rep(Rep(SubStr(ConCat(x , ł.ž)

︸ ︷︷ ︸
output: ⟨ł +6 775-969-238.ž,ł +82 10-56-80.ž⟩

, 2, Length(x) − 1)

︸ ︷︷ ︸
output: ⟨ł6 775-969-238.ž,ł82 10-56-80.ž⟩

, ł ž, ł.ž), ł-ž, ł.ž), ł-ž, ł.ž)

︸ ︷︷ ︸
output: ⟨ł6.775.969.238.ž,ł82.10.56.80.ž⟩

.

(1)

The size of the solution in AST nodes is 18.

2.1 Existing Approaches

Both of the bottom-up enumerative search and the TDP-based search cannot be used to solve
this problem. The solution has a large syntax-tree representation (size 18) and is difficult to be
synthesized by enumeration. The bottom-up enumeration-based synthesizers search for the solution
by enumerating programs generated by the given grammar in order of size. During the search, they
prune the search space using observational equivalence with respect to a given set of input-output
examples. For example, since two programs SubStr(x , 0, 1) and ł ž generate the same output, only
the smaller expression ł ž is maintained and used for constructing larger candidates. Though this
optimization has been shown effective in various application domains (e.g., EUSolver adopting
this strategy won the general track in 2016 SyGuS competition [Past SyGuS Competition 2020]), the
solution cannot be found even within 6 hours since the number of enumerated candidates grows
exponentially in program size in general.
In particular, the previous methods based on the TDP are not applicable since the grammar is

not restricted enough. Based on a hypothesis about the structure of the desired program, they
construct a solution candidate by recursively decomposing a synthesis problem into simpler
subproblems and obtaining a solution for each one. In this example, assuming the desired solution
is of the form Rep(e1, e2, e3), the problem is supposed to be decomposed into subproblems of finding
subexpressions e1, e2 and e3 such that e1 evaluates to a string and e2 (resp. e3) evaluates to a
proper match (resp. replacement) string to obtain the desired output. Since there are infinitely
many possible argument values, we cannot deduce finitely many input-output examples for the
subexpressions. For this reason, to the best of our knowledge, there is no known TDP-based method
generally applicable to SyGuS problems with arbitrary grammars.

2.2 Our Approach

Our key observation is as follows: the bottom-up enumerative search quickly identifies small but
important subexpressions of a desired program (e.g., ConCat(x , ł.ž) and Length(x) in the example).
Thus, we generate expressions using the bottom-up enumeration and weave them together into
a solution by leveraging on the top-down propagation. Fig. 2 depicts the process of finding the
solution using our method.

Component Generation. We first generate component expressions. As depicted in Fig. 1, the
user may provide an integer n as the initial upperbound of sizes of component expressions. The

2Our approach is also applicable to a broad class of SyGuS instances beyond the cases where input-output examples are

provided upfront. Please see Section 3 for more details.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 54. Publication date: January 2021.

54:6 Woosuk Lee

Fig. 2. Top-down propagation with component expressions generated by Bottom-up enumeration on the
motivating example where ≺ denotes the substring relation.

larger n we use, the more chance we get for finding a solution in the composition phase at the cost
of extra overhead on both the generator and the composer. The number of component expressions
is potentially exponential to n, but in practice, the pruning technique based on observational
equivalence significantly decreases the number of components. The component set monotonically
grows in the process of our synthesis algorithm. If we fail to find a solution in the composition phase,
we increase n by 1 and add larger expressions into the component set and repeat the composition
phase. Suppose we are given n = 3. Using the bottom-up enumerative search, we get a set C of
component expressions of size ≤ 3, which is shown in the left top of Fig. 2. Equipped with C , we
go into the composition phase.

Composition based on the TDP. Our composition phase based on the TDP alternates between
the following two steps:

(1) Given some examples for a nonterminal N (initially the start symbol S), if there exists a
component expression derivable from N satisfying the examples, use it to directly solve the
given synthesis problem. If not, invoke synthesis on all right-hand side (RHS) rules of N , and
unite the results. Each RHS rule corresponds to a hypothesis about the structure of the target
program derivable from N .

(2) Deduce examples that should be propagated to arguments N1, · · · ,Nk of a current rule
N → F (N1, · · · ,Nk) to decompose the problem for N into multiple sub-problems.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 54. Publication date: January 2021.

Combining the Top-Down Propagation and Bottom-Up Enumeration for Inductive Program Synthesis 54:7

Fig. 3. Alignments of the desired outputs and outputs produced by ConCat(x , ł.ž).

Suppose we first consider a hypothesis SubStr(S, I1, I2). We attempt to generate examples on the
first argument S . Given the input string i1 (resp. i2), the first argument expression should evaluate
to a string łcontainingž o1 (resp. o2). Since there may be infinitely many such strings, we cannot
infer finitely many input/output examples for S .

Finitizing the Value Spaces of Unconstrained Arguments by using Components. When
we encounter such an argument that has infinitely many possible values (which we call an uncon-

strained argument), we limit the value space of that argument within the set D of output vectors
produced by the expressions in C on the input examples (i.e., D = {⟨⟦e⟧ (i1), ⟦e⟧ (i2)⟩ | e ∈ C}).
If we can find an expression e ∈ C that produces a vector of strings each of which contains the
corresponding output example, then by fixing the first argument S to be e , we will be able to infer
proper examples on I1 and I2 by identifying the starting and ending positions of o1 (resp. o2) in
⟦e⟧ (i1) (resp. ⟦e⟧ (i2)). Unfortunately, there is no such expression in C . We reject the hypothesis
and move on to other hypotheses.
By doing so, we may miss a solution of the form SubStr(S, I1, I2) at this iteration because the

value set derived from C does not contain the values of all possible argument expressions. For
example, the following expression is such a solution:

SubStr(Rep(Rep(Rep(Rep(ConCat(x , ł.ž), ł ž, ł.ž), ł ž, ł.ž), ł-ž, ł.ž), ł-ž, ł.ž)
︸ ︷︷ ︸

e ′

, 2, Length(x) − 1). (2)

However, the overall algorithm does not compromise the search completeness. Though we could
not find the solution (2) at this time, we will eventually find it if we keep increasing n until when
n = 15 because C will contain the subexpression e ′ of size 15 in (2).

Next, based on another hypothesis Rep(S1, S2, S3), we attempt to generate examples on the
argument expressions. Similarly to the previous case, there are infinitely many possible values
for S1, and we may let the value space of S1 be the set D. However, to find the solution in this
manner, we would need the expression e in the solution (1) of which size is still too large (15) to be
generated by the component generator. To address this problem, we guide the decomposition to
generate sub-problems that can be eventually solved with the current set C of small expressions.

Inverse Semantics Specialized for the SyGuS Language Constructs. We have devised an
effective inverse semantics operator for the Rep function, which enables to construct the solution
with the current set C . For the purpose of finding a small solution, we search for an expression
in C which produces strings similar to o1 and o2 respectively so that a minimal number of string
replacement operations may result in the desired output examples. The similarity is defined by
string edit distance.
For each e ∈ C , we compute edit distance between ⟦e⟧ (i1) and o1 (resp. ⟦e⟧ (i2) and o2), and

find out ConCat(x , ł.ž) produces strings closest to the output examples. We compute an alignment

of ⟦ConCat(x , ł.ž)⟧ (i1) and o1 (resp. ⟦ConCat(x , ł.ž)⟧ (i2) and o2). An alignment is a pair of strings
obtained by arranging two strings to identify regions of similarity as depicted in Fig. 3 where ϵ

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 54. Publication date: January 2021.

54:8 Woosuk Lee

denotes the empty word and the highlighted in color denote mismatched characters. From the
alignments, we get a list of pairs of match/replacement strings (which we call replacement pairs)

[(ł +ž, łž), (ł ž, ł.ž), (ł-ž, ł.ž), (ł-ž, ł.ž)] (3)

where each element represents a contiguous mismatched segment. On ⟦ConCat(x , ł.ž)⟧ (i1) (resp.
⟦ConCat(x , ł.ž)⟧ (i2)), we repeatedly perform string replacement using the replacement pairs with-
out the last pair and obtain ł6.775.969-238.ž (resp. ł82.10.56-80.ž). Now we have found proper
constraints on the argument expressions; given the input examples, the first argument should
produce ⟨ł6.775.969-238.ž, ł82.10.56-80.ž⟩, and the other arguments should produce ⟨ł-ž, ł-ž⟩ and
⟨ł.ž, ł.ž⟩, respectively. We continue the deductive search only for the first argument since the others
can be directly solved by component expressions ł-ž and ł.ž respectively.

We turn to the problem of finding an expression that produces ⟨ł6.775.969-238.ž, ł82.10.56-80.ž⟩.
Suppose again we are based on the hypothesis Rep(S1, S2, S3). After a similar process, we find con-
straints on the argument expressions; given the input examples, the first argument should produce
⟨ł6.775-969-238.ž, ł82.10-56-80.ž⟩, and the others should produce ⟨ł-ž, ł-ž⟩ and ⟨ł.ž, ł.ž⟩, respectively.
Next, we find an expression that produces ⟨ł6.775-969-238.ž, ł82.10-56-80.ž⟩. Suppose again we

are based on the hypothesis Rep(S1, S2, S3). After a similar process, we conclude the first argument
should produce ⟨ł6 775-969-238.ž, ł82 10-56-80.ž⟩. The other arguments are expected to produce
⟨ł ž, ł ž⟩ and ⟨ł.ž, ł.ž⟩ which are the outputs of components ł ž and ł.ž respectively.
Now we try to find an expression that produces ⟨ł6 775-969-238.ž, ł82 10-56-80.ž⟩. Suppose

again we are based on the hypothesis Rep(S1, S2, S3). The constraints on S1, S2 and S3 are to produce
⟨ł6 775-969-238.ž, ł82 10-56-80.ž⟩, ⟨ł +ž, ł +ž⟩ and ⟨łž, łž⟩ respectively. We cannot solve the sub-
problem for S3 because we do not have the empty string as a constant string in the grammar, and
we cannot generate it through any of the allowed string operators ś concatenation, replacement,
and substring extraction. Thus we reject the hypothesis.
We move on to another hypothesis that the desired expression is of the form SubStr(S, I1, I2).

The constraint on S is to output a string containing ł6 775-969-238.ž given i1 (resp. ł82 10-56-80.ž
given i2). The component ConCat(x , ł.ž) satisfies this constraint. The constraints on I1 and I2
are to produce ⟨2, 2⟩ and ⟨14, 12⟩ respectively. That is because SubStr(ConCat(i1, ł.ž), 2, 14) and
SubStr(ConCat(i2, ł.ž), 2, 12) evaluate to the desired outputs o1 and o2 respectively. The constraint
on I1 is directly solvable by using the component expression 2. To solve the subproblem for I2, we
use a hypothesis that the solution is of the form I1−I2. Again, there are infinitely many combinations
of two expressions e1 and e2 such that e1 − e2 produces ⟨14, 12⟩. We search for an expression in C
that evaluates to an integer greater than 14 on i1 (resp. 12 on i2). We choose Length(x) because
it produces ⟨15, 13⟩. By setting the expected output for I1 to be ⟨15, 13⟩, the supposed output of
I2 is determined to be ⟨1, 1⟩ accordingly. The subproblem for I2 is directly solvable by using the
component expression 1. Now that every subproblem has been solved, the solution is found.

Using Version Space Algebra. At this point, we may stop or continue searching for a better
solution by exploring other hypotheses. If the user is interested in finding a solution that (locally)
maximizes an objective function, we get all solutions obtainable by this method, store them into a
space-efficient data structure called version space algebra (VSA), which has been often used for PBE
tasks [Gulwani 2011], and pick the best one.

The rest of the paper is organized as follows. Section 3 introduces preliminary concepts. Section 4
describes our algorithm of combining the top-down propagation and bottom-up enumeration.
Section 5 presents our experimental results. Section 6 discusses related work and Section 7 concludes.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 54. Publication date: January 2021.

Combining the Top-Down Propagation and Bottom-Up Enumeration for Inductive Program Synthesis 54:9

3 PRELIMINARIES

In this section, we introduce preliminary concepts including syntax-guided synthesis over a finite set
of examples, the top-down deductive synthesis strategy and version-space algebra (some notations
are borrowed from [Hu et al. 2020] and [Gulwani et al. 2017]).

Term. A signature Σ is a set of function symbols, where each f ∈ Σ is associated with a non-
negative interger n, the arity of f (denoted arity(f)). For n ≥ 0, we denote the set of all n-ary
elements Σ by Σ

(n). Let X be a set of variables. The set TΣ,X of all Σ-terms over X is inductively

defined; X ⊆ TΣ,X and ∀n ≥ 0, f ∈ Σ
(n)
. t1, · · · , tn ∈ TΣ,X . f (t1, · · · , tn) ∈ TΣ,X .

Regular Tree Grammar. A regular tree grammar (RTG) is a tupleG = (N , Σ, S,δ) where N is a
finite set of nonterminal symbols of arity 0; Σ is a signature; S ∈ N is an initial nonterminal; and δ is
a finite set of productions of the form A0 → σ (i)(A1, · · · ,Ai), where for 1 ≤ j ≤ i , each Aj ∈ N is a
nonterminal. Given a tree (or a term) t ∈ TΣ,X , applying a production r = A → β into t is replacing
the left-most occurrence of A in t with the right-hand side β . A tree t ∈ TΣ,X is generated by the
grammar G ś denoted by t ∈ L(G) ś iff it can be obtained by applying a sequence of productions
r1, · · · , rn to the tree of which root node represents the initial nonterminal S . δA ⊆ δ denotes the
set of productions associated with nonterminal A. We denote L(G) |A as a set of trees that can be
derived from the nonterminal A.

Syntax-Guided Synthesis (SyGuS). Given a background theory T (e.g., linear integer arith-
metic) over a signature Σ, the goal of a SyGuS problem is to find a function f that satisfies a
syntactic and a semantic constraints provided by the user. A syntactic constraint limits the search
space of f and given as an RTG G that defines a subset of all terms in TΣ,X . A semantic constraint
is a logical formula defining the correctness condition of f . We denote a SyGuS problem as a pair
⟨φ(f (®x), ®x),G⟩ where φ(f (®x), ®x) is a semantic constraint and ®x denotes inputs. We will denote a
fact that a function f is valid for a specification φ by f |= φ.

Most SyGuS solvers do not solve the problem of finding a term satisfying the specification on all
inputs. Instead, they search for an expression satisfying the specification on a set of finite examples
using Counterexample-Guided Inductive Synthesis (CEGIS) [Solar-Lezama et al. 2006]. If such a
term is found, it is validated to check if it can be generalized to all inputs.

Definition 3.1. Given a SyGuS problem sy = ⟨φ(f (®x), ®x),G⟩ and a finite vector of inputs ®ein =

⟨i1, · · · , in⟩, let sy
®ein := ⟨φ®ein (f),G⟩ denote the problem of finding a term P ∈ L(G) such that

⟦P⟧ is only required to be correct on the examples in ®ein . Let ⟦P⟧®ein denote the vector of outputs

⟨⟦P⟧ (i1), · · · , ⟦P⟧ (in)⟩ produced by P on ®ein . A sy®e
in

is realizable if there exists P such that φ®ein
=∧

i j ∈®ein φ(⟦P⟧ (i j), i j) holds, unrealizable otherwise.

SyGuS-PBE. We call a SyGuS problem sy a SyGuS-PBE instance if there exists a finite vector of
inputs ®ein = ⟨i1, · · · , in⟩ such that

• the specification φ®ein of sy®e
in

can be written in the form of
∧

i j ∈®ein ⟦P⟧ (i j) = oj for some
constants o1, · · · ,on ,

• sy®e
in

is realizable, and there exists a solution of sy®e
in

that can be generalized to sy.

Not only SyGuS problems that use a semantic specification comprising input-output examples
(i.e., PBE) but also SyGuS instances having a functional semantic specification (i.e., there exists a
single unique output satisfying the specification for the same input) also SyGuS-PBE instances.
For example, SyGuS problems where semantic specifications are of the form ∀®x . f (®x) = f ′(®x) for

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 54. Publication date: January 2021.

54:10 Woosuk Lee

some known function f ′ which appear in applications such as code optimization [Phothilimthana
et al. 2016], program deobfuscation [Jha et al. 2010], and security [Eldib et al. 2016] fall into this
category. In such cases, ®ein can be found through CEGIS.

Witness Functions. The top-down propagation is performed by using witness functions (also
called inverse semantics operators). Given a regular tree grammar G with a signature Σ having
a production rule N0 → F (N1, · · · ,Nk), a witness function F−1j deduces a specification φ j on j-th

argument subexpression for a given specification φ on F (N1, · · · ,Nk). The deduced specification
φ j is necessary iff 3

∀Pj . Pj ̸ |= φ j =⇒ ∄P1, · · · , Pj−1, Pj+1, · · · , Pk . F (P1, · · · , Pj−1, Pj , Pj+1 · · · , Pk) |= φ.

The specification φ j is sufficient iff

∀Pj . Pj |= φ j =⇒ ∃P1, · · · , Pj−1, Pj+1, · · · , Pk . F (P1, · · · , Pj−1, Pj , Pj+1 · · · , Pk) |= φ.

Since, in general, argument subexpression are not independent of each other, all subexpression
specifications should be constructed at the same time, which is costly. Therefore, conditional witness
functions as per-argument decomposition of inverse semantics are often used.

A conditional witness function of F for j-th argument is a function F−1j (φ | N1 |= φ1, · · · ,Nj−1 |=

φ j−1) that deduces a specification φ j on Nj assuming prerequisite arguments N1, · · · ,Nj−1 satisfy
specifications φ1, · · · ,φ j−1, respectively.

4 The deduced specification φ j is necessary iff

∀Pj . Pj ̸ |= φ j =⇒ ∄P1, · · · , Pj−1, Pj+1, · · · , Pk .
(∀1 ≤ i < j . Pi |= φi) ∧ F (P1, · · · , Pj−1, Pj , Pj+1 · · · , Pk) |= φ.

In this paper, we only consider conditional witness functions and specifications comprising input-
output examples. In addition, we often denote a disjunctive specification as a set (the empty set
corresponds to false).

Version Space Algebra (VSA). Given a regular tree grammar G = ⟨N , Σ, S,δ⟩, a version space

algebra is a representation for a set Ñ of programs in L(G) |N . The grammar of VSAs is:

Ñ → {P1, · · · , Pk } |
⋃

(Ñ1, · · · , Ñk) | F▷◁(Ñ1, · · · , Ñk)

where F ∈ Σ
(k) is any k-ary operator in L(G), and Pj are some programs in L(G). Intuitively, a

VSA is a directed acyclic graph (DAG) where each node represents a set of programs. Leaf nodes
contain explicit enumerations of programs; they are composed into larger sets by two possible VSA
constructor nodes. Union nodes

⋃
represent a set union of their constituent VSAs. Join nodes F▷◁

represent a cross-product of their constituent VSAs, with an associated operator F applied to all
combinations of parameter programs from the cross-product.
The semantics of VSA as a set of programs is given as follows:

P ∈ {P1, · · · , Pk } (∃j : P = Pj)

P ∈
⋃
(Ñ1, · · · , Ñk) (∃j : P ∈ Ñj)

P ∈ F▷◁(Ñ1, · · · , Ñk) (P = F (P1, · · · , Pk) ∧ ∀j : Pj ∈ Ñj).

The key property of VSAs is their ability to encode exponential sets of programs in polynomial
space. They achieve that by providing two kinds of sharing among program subexpressions. One is

3All quantified variables refer to terms in TΣ,X unless otherwise specified.
4In the paper [Polozov and Gulwani 2015] where the concept of conditional witness functions is introduced, functions can

take prerequisite arguments in an arbitrary order. In this paper, we only consider conditional witness functions that derive

specifications of arguments in order from left to right.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 54. Publication date: January 2021.

Combining the Top-Down Propagation and Bottom-Up Enumeration for Inductive Program Synthesis 54:11

Algorithm 1 The Duet Algorithm

Require: A SyGuS-PBE problem (φ,G = ⟨N , Σ, S,δ⟩)

Require: Initial component size n

Ensure: A program P ∈ L(G) such that P |= φ

1: C := {} ▷ Component library C : N → 2L(G)

2: repeat

3: C := BottomUpEnum(G,C,n) ▷ Bottom-up enumeration for component generation

4: S̃ := Learn(S,C,φ) ▷ Top-down propagation for composition

5: if ∃P ∈ S̃ . P |= φ then

6: return Pick(S̃) ▷ Return a solution

7: end if

8: n := n + 1 ▷ Increase the component size

9: until true

provided by the join nodes, which encode a cross-product of their subexpression sets. The other is
provided by the DAG structure of a VSA, which allows subexpression sharing among program sets
that reference the same VSA node through different paths in the DAG.

4 SYNTHESIS ALGORITHM

In this section, we describe our algorithm combining the top-down propagation and bottom-up
enumerative search. We first give a high-level overview of the synthesis algorithm, describe witness
functions for SyGuS language constructs, and present optimization techniques.

Notations. In the rest of this section, not only user-provided semantic specifications of SyGuS-
PBE instances but also argument specifications deduced by witness functions will be represented
as vectors of input-output examples. A specification φ as a vector of input-output examples ⟨i1 7→
o1, · · · , in 7→ on⟩ is often denoted by ®ein ⇝ ®eout for conciseness where ®ein = ⟨i1, · · · , in⟩ and
®eout = ⟨o1, · · · ,on⟩. φ

in (resp. φout) denotes the vector of input (resp. output) examples of φ. We
will use v[j] to denote the j-th element of a vector v .

4.1 Overview

Algorithm 1 shows the high-level structure of our synthesis algorithm, which takes a SyGuS-
PBE problem comprising a specification φ that should be satisfied by the synthesized program as
well as a regular tree grammar G as input along with an integer n meaning the maximum size
of component expressions. The algorithm uses two subprocedures: the bottom-up enumerator
BottomUpEnum for generating components, and the top-down composer Learn for composing
the component expressions to find a solution. For each nonterminal symbol, the component library
C stores component expressions of size ≤ n derivable from the nonterminal symbol. C is initialized
to be empty (line 1), and then incrementally updated by the BottomUpEnum procedure.

The main loop (lines 2ś9) is repeated until a solution is found. At the first iteration, the bottom-
up enumerator BottomUpEnum generates expressions of size ≤ n in the grammar G. It then
incrementally builds expressions of size ≤ n using the previously generated expressions.Cmaintains
semantically unique expressions, i.e. for each nonterminal Ni ∈ N , no two expressions in C(Ni)
are functionally equivalent with respect to the specification φ. Using the components generated
so far, the top-down composer Learn constructs a VSA (line 4). If the resulting VSA contains a
solution (line 5), we pick the best program from the VSA and return it as a solution (line 6). The
resulting VSA may not contain a solution if the composition fails due to insufficient components.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 54. Publication date: January 2021.

54:12 Woosuk Lee

Learn(N ,C,φ) = {e ∈ C(N) | e |= φ}
∃e ∈ C(N). e |= φ

Learn(N ,C,φ) =
⋃

R∈δN

LearnRule(N ,R,φ)
∄e ∈ C(N). e |= φ

ArgVSAs = { ⟨Learn(N1, C, φ1), · · · , Learn(Nk , C, φk)⟩ | ⟨φ1, · · · , φk ⟩ ∈ Φ}

Φ = { ⟨φ1, · · · , φk ⟩ | φ1 ∈ F−1
1 (φ), ∀1 < i ≤ k . φi ∈ F−1

i (φ | N1 |= φ1, · · · , Ni−1 |= φi−1)}

LearnRule(N , N → F (N1, · · · , Nk), C, φ) =
⋃
{F▷◁(Ñ1, · · · , Ñk) | ⟨Ñ1, · · · , Ñk ⟩ ∈ ArgVSAs}

F , ite

T =
⋃

1≤i≤ |φ |
{Pick(Learn(NT ,C,φ[i]))} ∪ C(NT) P = C(NP) e = LearnDT(T, P) Ñ =

{
{e} e , ⊥

∅ o/w

LearnRule(N ,N → ite(NP ,NT ,NT),C,φ) = Ñ

Fig. 4. Inference rules for constructing VSAs with the top-down propagation.

To provide more component expressions to the top-down composer, n is increased by 1 (line 8) and
the process is repeated.

Our algorithm is sound and complete in that it finds a program correct with respect to the given
specification φ if it exists in the search space.

Theorem 4.1. Given a SyGuS-PBE problem ⟨φ,G⟩, Algo. 1 finds a solution if one exists in the search
space L(G).

4.2 The Learn Procedure

Fig. 4 depicts constructive inference rules for the top-down deductive search. The Learn procedure
takes specification φ, nonterminal N , and component library C.
The first rule states that if there are components satisfying a given specification, the set of the

component expressions is immediately returned without generating any subproblems.
The second rule states that if a component satisfying a given specification does not exist in the

component library, we invoke synthesis on all production rules associated with N , and unite the
resulting VSAs.

The third rule is for synthesizing conditional-free expressions. Given a rule N → F (N1, · · · ,Nk)
where F is not the if-then-else operator (ite), the LearnRule procedure returns a VSA where the
root node is a union node. The LearnRule procedure first obtains a set of lists of VSAs (denoted
ArgVSAs). Here, each list represents a set of argument expressions. To obtain ArgVSAs, we derive
a set Φ of all possible combinations of argument specifications by repeatedly applying conditional
witness functions. For each list of argument specifications, we obtain a list of VSAs. The resulting
VSA is a union of join nodes each of which represents argument expressions.

The last rule is for synthesizing large expressions with conditionals inspired by the decision tree
learning-based method of EUSolver [Alur et al. 2017]. The idea is to find different expressions that
work for different subsets of the inputs, and unite them into a solution that works for all inputs. To
this end, we identify terms (denoted T) and predicates (denoted P) separately and unify them into a
single conditional expression. For example, in the ite expression ite(x ≤ y,y,x), the terms are x
and y, and the predicate is x ≤ y. Such a conditional expression can be represented as a decision
tree. Suppose we are given a hypothesis ite(NP ,NT ,NT) where NP (resp. NT) is a nonterminal for
predicates (resp. terms). The component library C contains expressions C(NP) that can be used as
predicates (resp. C(NT) for terms). To construct a conditional expression, we need terms that work

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 54. Publication date: January 2021.

Combining the Top-Down Propagation and Bottom-Up Enumeration for Inductive Program Synthesis 54:13

Table 1. Categorization of the witness functions for the SyGuS operators. DSF: Domain-specific witness
function generating a fresh and sufficient specification. DSE: Domain-specific witness function generating
a pre-existing and sufficient specification. Universal: Domain-independent witness function generating a
pre-existing specification which may not be sufficient.

Theories

Category STRING BITVEC LIA SAT

ConCat−1
{1,2}

Rep−1
{1,2,3}

bv{add, sub, mul}−12 {+,−,×}−12

DSF StrToInt−11 IntToStr−11 bv{ashr, lshr, shl}−12

SubStr−1
{2,3}

StrAt−12

SubStr−11 StrAt−11 bvmul−11 ×−1
1 {and, or}−11

DSE IndexOf−1
{1,2}

bv{sdiv, srem}−11 {/, mod}−11

bv{and, or}−11

Universal The other remaining functions

for all inputs (i.e., each input-output example should be satisfied by at least one term expression).
Since the terms supplied by the component library may not work for all inputs, we augment the
set T of terms; we learn a term for each input-output example, and add it into T. And then, we
attempt to learn a decision tree that correctly works on all the input-output examples. If such a
decision tree exists, a singleton set containing the corresponding expression is returned. We may
fail to learn a decision tree if we do not have sufficient predicates. Then, the empty set is returned.

4.3 Witness Functions for the SyGuS Language Constructs

In this section, we propose cost-effective witness functions that can be used for a wide range
of SyGuS-PBE problems. Our witness functions do not always generate necessary specifications.
In other words, we may fail to construct a solution even with enough component expressions
available. However, this incompleteness does not harm the search completeness as already explained
in Section 2.
We first introduce the following concept to classify patterns among the witness functions and

categorize them.

Definition 4.2 (Fresh specification). Given a hypothesis F (N1, · · · ,Nk) about the desired program
satisfying input-output examples φ = ®ein ⇝ ®eout and component library C, a specification φ j for
j-th argument deduced by F−1j is called fresh if there is no component expression that can satisfy

the specification. Formally, φ j (= F−1j (®ein ⇝ ®eout | N1 |= φ1, · · · ,Nj−1 |= φ j−1)) is fresh iff

φ j ∩ {®ein ⇝ ⟦P⟧®ein | P ∈ C(Nj)} = ∅.

Otherwise, the specification is called pre-existing. Intuitively, if a deduced specification is pre-
existing, it can be directly solved by a component expression. Otherwise, the deduced specification
should be further decomposed using witness functions.

The witness functions that will be described later in this section are categorized into the following
three groups as represented in Table 1.

(1) Domain-specific witness functions generating a fresh and sufficient specification:
Witness functions of this type exploit domain knowledge of underlying operators to gen-
erate a fresh and sufficient specification. For example, recall the specification ⟨i1, i2⟩ ⇝
⟨ł6.775.969-238.ž, ł82.10.56-80.ž⟩ deduced for S1 of Rep(S1, S2, S3) in Section 2. The specifica-
tion is fresh because no component expression can satisfy it. In addition, the specification is

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 54. Publication date: January 2021.

54:14 Woosuk Lee

sufficient because specifications for the other arguments (S2 and S3) that lead to the entire
goal (i.e., satisfying the specification for the entire expression of form Rep(S1, S2, S3)) exist.

(2) Domain-specific witness functions generating a pre-existing and sufficient specification:
Witness functions of this type also exploit domain knowledge of underlying operators. For
instance, recall the specification ⟨i1, i2⟩ ⇝ ⟨ł +6 775-969-238.ž, ł +82 10-56-80.ž⟩ deduced
for S of SubStr(S, I1, I2) in Section 2. The specification is pre-existing because the component
expression ConCat(x , ł.ž) can satisfy it. The specification is sufficient because specifications
for the other arguments (S1 and S2) that lead to the entire goal exist.

(3) Domain-independent witness functions generating a pre-existing specification which may
not be sufficient (which we call universal witness functions):
Witness functions of this kind do not exploit domain knowledge of underlying operators,
thereby possibly generating a specification which is not sufficient.

The universal witness functions are formally defined as follows:

Definition 4.3 (Universal witness function). Given a hypothesis F (N1, · · · ,Nk) of the desired
program satisfying specification φ = ®ein ⇝ ®eout along with component library C, the universal
witness function F−1j for F that deduces a specification on j-th argument is defined as follows:

F−1j (®ein ⇝ ®eout | N1 |= φ1, · · · ,Nj−1 |= φ j−1)

=

{
{®ein ⇝

�
Pj

�
®ein | Pj ∈ C(Nj)} (1 ≤ j < k)

{®ein ⇝ ⟦Pk⟧®ein | Pk ∈ C(Nk),∀1 ≤ i < k . ∃Pi ∈ C(Ni). ⟦F (P1, · · · , Pk)⟧®ein = ®eout } (j = k)

The universal witness functions essentially enumerate all possible combinations of component
expressions that can be used as arguments.

Example 4.4. Consider the following solution to a SyGuS problem5 where the semantic specifica-
tion is ⟨łyellowž, łgrayž, · · ·⟩ ⇝ ⟨true, false, · · ·⟩.

Contains(ConCat(łbluež, ConCat(łorangež, łpinkž))
︸ ︷︷ ︸

e1

, Rep(x , łyellowž, łž)
︸ ︷︷ ︸

e2

) (4)

Contains(s, t) returns true if string s contains string t . The solution size in AST nodes is 10. To
find it, we use Contains−11 and Contains−12 , which are the universal witness functions. Suppose
we are given a hypothesis Contains(S1, S2) and generate a specification for S1 using component
expressions of size ≤ 5. There is no particular property of Contains that can be used to effectively
restrict the value space for S1. Thus Contains

−1
1 consider every component expression (including

e1 of size 5 in (4)) a potential candidate for S1. Subsequently, for each candidate expression for S1,
Contains−12 enumerates all the component expressions to find a correct expression for S2. It figures
out e2 of size 4 is the one that leads to the entire goal along with e1, thereby finding the solution.
Since enumerating expressions of size ≤ 5 is much cheaper than enumerating expressions of

size ≤ 10, the solution can be found 100x faster using the universal witness functions compared to
the bottom-up enumerative search for this example.

The universal witness functions may be unsound in the sense that even a specification for an
argument is deduced by them, there might not exist other arguments that lead to the entire goal.
For example, the grammar for the above example includes the empty string łž as a constant. The
set of candidates for the first argument enumerated by Contains−11 includes the empty string,
which subsequently generates a subproblem of finding e2 such that Contains(łž, e2) produces the

5https://github.com/SyGuS-Org/benchmarks/blob/master/comp/2019/PBE_SLIA_Track/euphony/cell-equals-one-of-

many-things.sl

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 54. Publication date: January 2021.

https://github.com/SyGuS-Org/benchmarks/blob/master/comp/2019/PBE_SLIA_Track/euphony/cell-equals-one-of-many-things.sl
https://github.com/SyGuS-Org/benchmarks/blob/master/comp/2019/PBE_SLIA_Track/euphony/cell-equals-one-of-many-things.sl

Combining the Top-Down Propagation and Bottom-Up Enumeration for Inductive Program Synthesis 54:15

ConCat(N1,N2) :

ConCat−11 (®ein ⇝ ®eout)= {®ein ⇝ ®c |∀j . ®c[j] , ϵ, ®c=LongestCommonPrefix(®eout , ⟦P⟧®ein) | P ∈ C(N1)}

ConCat−12 (®ein ⇝ ®eout | N1 |= φ1) = {®ein ⇝ ®c | ∀j . φout1 [j] · ®c[j] = ®eout [j]}

StrToInt(N1) :

StrToInt−11 (®ein ⇝ ®eout) = {®ein ⇝ ®c | ∀j . ®c[j] =
�
IntToStr(®eout [j])

�
}

IntToStr(N1) :

IntToStr−11 (®ein ⇝ ®eout) = {®ein ⇝ ®c | ∀j . ®c[j] =
�
StrToInt(®eout [j])

�
}

SubStr(N1,N2,N3) :

SubStr−11 (®ein ⇝ ®eout) = {®ein ⇝ ®c | ®c ∈ {⟦P⟧®ein | P ∈ C(N1)},∀j . ®e
out [j] ≺ ®c[j]}

SubStr−12 (®ein ⇝ ®eout | N1 |= φ1) = {®ein ⇝ ®c | ∀j .
�
SubStr(φout1 [j], ®c[j], |®eout [j]|)

�
= ®eout [j]}

SubStr−13 (®ein ⇝ ®eout | N1 |= φ1,N2 |= φ2) = {®ein ⇝ ®c | ∀j .
�
SubStr(φout1 [j],φout2 [j], ®c[j])

�
= ®eout [j]}

StrAt(N1,N2) :

StrAt−11 (®ein ⇝ ®eout) =

{
{®ein ⇝ ®c | ®c ∈ {⟦P⟧®ein | P ∈ C(N1)},∀j .®e

out [j] ≺ ®c[j]} (∀j . |®eout [j]| = 1)

∅ (otherwise)

StrAt−12 (®ein ⇝ ®eout | N1 |= φ1) = {®ein ⇝ ®c | ∀j . ®eout [j] =
�
StrAt(φout1 [j], ®c[j])

�
}

IndexOf(N1,N2,N3) :

IndexOf−11 (®ein ⇝ ®eout) = {®ein ⇝ ®c | ®c ∈ {⟦P⟧®ein | P ∈ C(N1)},∀j . |®c[j]| > ®eout [j]}

IndexOf−12 (®ein ⇝ ®eout | N1 |= φ1) = {®ein ⇝ ®c | ®c ∈ {⟦P⟧®ein | P ∈ C(N2)},∀j . ®e
out [j] = −1∨

®c[j] ⪯
�
SubStr(φout1 [j], ®eout [j], |φout1 [j]| − ®eout [j]

�
}

IndexOf−13 (®ein ⇝ ®eout | N1 |= φ1,N2 |= φ2) = {®ein ⇝ ®c | ®c ∈ {⟦P⟧®ein | P ∈ C(N3)},

∀j .
�
IndexOf(φout1 [j],φout2 [j], ®c[j])

�
= ®eout [j]}

Rep(N1,N2,N3) :

Rep−11 (®ein ⇝ ®eout) = {®ein ⇝ ®c | ∀j . ®c[j] , ϵ, ®c ∈ {getSrc(⟦P⟧®ein , ®e
out) | P ∈ C(N1)}}

Rep−12 (®ein ⇝ ®eout | N1 |= φ1) = {®ein ⇝ ®c | ∀j . ⟨(®c[j], _)⟩ = getRepPairs(φout1 [j], ®eout [j])}

Rep−13 (®ein ⇝ ®eout | N1 |= φ1,N2 |= φ2)= {®e
in
⇝ ®c | ∀j .⟨(φout2 [j], ®c[j])⟩=getRepPairs(φout1 [j], ®eout [j])}

Others F (N1, · · · ,Nk) : (Universal witness function)

Fig. 5. Witness functions for strings. C denotes a given component library, and · denotes the string concate-
nation operator.

desired output examples ⟨true, false, · · ·⟩. Because the empty string cannot contain any strings,
there is no such e2. On the other hand, domain-specific witness functions are sound by exploiting
domain-knowledge of underlying operators. The following theorem states that the domain-specific
witness functions listed in Table 1 are sound.

Theorem 4.5. Every specification deduced by a domain-specific witness function in Table 1 is

sufficient.

In the sequel, we describe our witness functions for the operators supported in theories of strings,
fixed-width bitvectors, linear integer arithmetic, and propositional logic in detail.

STRING. Fig. 5 depicts the definitions of our witness functions for strings. All the auxiliary
functions used in the definitions are defined in Fig. 6. We illustrate how some of them work on the
following SyGuS-PBE problem.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 54. Publication date: January 2021.

54:16 Woosuk Lee

1: Function LongestCommonPrefix(®s, ®t)

2: return ®c such that ∀j . ®c[j] is the longest common prefix

of ®s[j] and ®t[j].

3: Function replaceWithRepPairs(s, p)

4: u := s

5: for i = 1 to |p | do

6: (smatch, sreplace) := p[i]

7: u :=
�
Rep(u, smatch, sreplace)

�

8: end for

9: return u

10: Function getSrc(®s, ®t)

11: ®c := ⟨⟩

12: for i = 1 to |®s | do

13: p := getRepPairs(®s[i], ®t[i])

14: if p is empty then

15: ®c := ®c + ⟨ϵ ⟩

16: else

17: p′ := p[1, · · · , |p | − 1]

18: ®c := ®c + ⟨replaceWithRepPairs(®s[i], p′)⟩

19: end if

20: end for

21: return ®c

21: Function getRepPairs(s, t)

22: p := ⟨⟩ ▷ Vector of replacement pairs

23: s⋄, t⋄ := Align(s, t) ▷ Get an alignment of s and t

24: if EditDistance(s⋄, t⋄) ≥ min(|s |, |t |) then

25: return ⟨⟩ ▷ s and t are not similar enough

26: end if

27: i := 1 ssub := ϵ tsub := ϵ

28: for i = 1 to |s⋄ | do

29: if s⋄[i] = t⋄[i] then

30: delete all ϵ from ssub, tsub.

31: p := p + ⟨(ssub, tsub)⟩ ▷ +: vector concatenation

32: ssub := ϵ tsub := ϵ

33: else

34: ssub := ssub · s⋄[i] ▷ ·: string concatenation

35: tsub := tsub · t⋄[i]

36: end if

37: end for

38: if t = replaceWithRepPairs(s, p) then

39: return p

40: else

41: return ⟨⟩

42: end if

Fig. 6. Auxiliary functions used in Fig. 5.

Example 4.6. Consider the following problem of synthesizing a string-manipulating function f

that takes as input a string x . The syntactic specification for f is the grammar:

S → x | ł ž | łDr.ž | SubStr(S, I , I) | ConCat(S, S)

I → 0 | IndexOf(S, S, I)

where IndexOf(s, t , i) returns the position of the first occurrence of t in the string s after the index
i . It returns −1 if t does not occur in s . The semantic specification for f is ®ein ⇝ ®eout where
®ein = ⟨łJan Kž, łNancy Fž⟩ and ®eout = ⟨łDr. Janž, łDr. Nancyž⟩. The solution is

ConCat(łDr.ž, ConCat(ł ž, SubStr(x , 0, IndexOf(x , ł ž, 0)))).

We first generate component expressions of size 1 and obtain the following component library:

C = {S 7→ {x , ł ž, łDr.ž}, I 7→ {0}}.

And then, suppose we first consider a hypothesis ConCat(S1, S2). We obtain specifications for
arguments S1 and S2 as follows (LCP denotes LongestCommonPrefix for brevity):

ConCat−11 (®ein ⇝ ®eout) ConCat−12 (®ein ⇝ ®eout | S1 |= ®ein ⇝ ⟨łDr.ž, łDr.ž⟩)

={®ein⇝LCP(⟨łDr. Janž, łDr. Nancyž⟩, ⟨łDr.ž, łDr.ž⟩)} ={®ein ⇝ ⟨ł Janž, ł Nancyž⟩}

={®ein⇝ ⟨łDr.ž, łDr.ž⟩}

The specification for S1 is directly satisfied by the component łDr.ž. However, the specification for
S2 is not solvable with any of the components. We further decompose it. Suppose again we consider
the hypothesis ConCat(S1, S2). We obtain specifications for arguments S1 and S2 as follows:

ConCat−11 (®ein ⇝ ⟨ł Janž, ł Nancyž⟩) ConCat−12 (®ein ⇝ ⟨ł Janž, ł Nancyž⟩ | S1 |= ®ein ⇝ ⟨ł ž, ł ž⟩)

= {®ein ⇝ LCP(⟨ł Janž, ł Fž⟩, ⟨ł ž, ł ž⟩)} = {®ein ⇝ ⟨łJanž, łNancyž⟩}

= {®ein ⇝ ⟨ł ž, ł ž⟩}

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 54. Publication date: January 2021.

Combining the Top-Down Propagation and Bottom-Up Enumeration for Inductive Program Synthesis 54:17

The specification for S1 is satisfied by the component ł ž. The specification for S2 is further
decomposed. Suppose we consider a hypothesis SubStr(S, I1, I2). We obtain specifications for
arguments as follows:

SubStr−11 (®ein ⇝ ⟨łJanž, łNancyž⟩)

= {®ein ⇝ ⟦x⟧®ein } (∵ x ∈ C(S) produces strings containing łJanž and łNancyž respectively.)

= {®ein ⇝ ⟨łJan Kž, łNancy Fž⟩}

SubStr−12 (®ein ⇝ ⟨łJanž, łNancyž⟩ | S |= ®ein ⇝ ⟨łJan Kž, łNancy Fž⟩)

= {®ein ⇝ ⟨0, 0⟩} (∵ ⟦SubStr(łJan ž, 0, 3)⟧ = łJanž, ⟦SubStr(łNancy ž, 0, 5)⟧ = łNancyž.)

SubStr−13 (®ein ⇝ ⟨łJanž, łNancyž⟩ | S |= ®ein ⇝ ⟨łJan Kž, łNancy Fž⟩, I1 |= ®ein ⇝ ⟨0, 0⟩)

= {®ein ⇝ ⟨3, 5⟩}

The specifications for S and I1 are satisfied by x and 0, respectively. The specification for I2 is
further decomposed. Suppose we consider a hypothesis IndexOf(S1, S2, I). We obtain specifications
for arguments as follows:

IndexOf(®ein ⇝ ⟨3, 5⟩)

= {®ein ⇝ ⟦x⟧®ein } (∵ x ∈ C(S) produces strings of which lengths are greater than 3 and 5 resp.)

= {®ein ⇝ ⟨łJan Kž, łNancy Fž⟩}

IndexOf(®ein ⇝ ⟨3, 5⟩ | S1 |= ®ein ⇝ ⟨łJan Kž, łNancy Fž⟩)

= {®ein ⇝ ⟦ł ž⟧®ein } (∵ The position of ł ž in łJan Kž and łNancy Fž are 3 and 5 resp.)

= {®ein ⇝ ⟨ł ž, ł ž⟩}

IndexOf(®ein ⇝ ⟨3, 5⟩ | S1 |= ®ein ⇝ ⟨łJan Kž, łNancy Fž⟩, S2 |= ®ein ⇝ ⟨ł ž, ł ž⟩)

= {®ein ⇝ ⟦0⟧®ein } (∵ 0 ∈ C(I) produces proper starting positions.)

= {®ein ⇝ ⟨0, 0⟩}

The specifications for S1, S2, and I are satisfied by component expressions x , ł ž, and 0, respectively.
Because no subproblem is left unsolved, the solution is found.

Next, we detail the witness functions for the Rep operator which are based on the following
concept.

Definition 4.7 (Alignment [Durbin et al. 1998]). Suppose we are given a fixed set of alphabets Σ
such that ϵ < Σ. A pair of words a⋄,b⋄ ∈ (Σ ∪ {ϵ})+ is called alignment of sequences a and b (a⋄

and b⋄ are called alignment strings) iff

• |a⋄ | = |b⋄ |
• ∀1 ≤ i ≤ |a⋄ |. a⋄i , ϵ ∨ b⋄i , ϵ

• Deleting all ϵ from a⋄ (resp. b⋄) yields a (resp. b).

The getRepPairs procedure in Fig. 6 computes alignments and replacement pairs (introduced in
Section 2) of given two strings. A complication is that there may be infinitely many alignments of
aribtrary two strings. We use Needleman-Wunsch algorithm [Needleman and Wunsch 1970] to
find the best alignment which incurs the smallest edit distance.
The procedure does not return replacement pairs if two given strings are not similar enough

(line 24). This is a heuristic for enforcing termination of the TDP by avoiding deducing infinitely
many specifications due to repeated string replacements. The procedure checks correctness of
generated replacement pairs (line 38), which is necessary in the following case.

Example 4.8. Let s = ł+6.775-969-238ž and t = ł+6-775 969-23ž. The best alignment of s and
t is ł+6.775-969-238ž and ł+6-775 969-23ϵž. The replacement pairs is ⟨(ł.ž, ł-ž), (ł-ž, ł ž), (ł8ž, ϵ)⟩.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 54. Publication date: January 2021.

54:18 Woosuk Lee

String replacement on s using the replacement pairs yields ł+6 775-969-23ž, which is not equivalent
to t . In such a case, the getRepPairs procedure simply returns the empty list, and no argument
specifications are deduced.

bvadd(N1, N2) :

bvadd−11 (®ein ⇝ ®eout) = {®ein ⇝ ®c | ®c ∈ {⟦P⟧®ein | P ∈ C(N1)}}

bvadd−12 (®ein ⇝ ®eout | N1 |= φ1) = {®ein ⇝ ®c | ∀j . ®c[j] =
�
bvsub(®eout [j], φout1 [j])

�
, |®c[j] | < |®eout [j] | }

bvsub(N1, N2) :

bvsub−11 (®ein ⇝ ®eout) = {®ein ⇝ ®c | ®c ∈ {⟦P⟧®ein | P ∈ C(N1)}}

bvsub−12 (®ein ⇝ ®eout | N1 |= φ1) = {®ein ⇝ ®c | ∀j . ®c[j] =
�
bvsub(φout1 [j], ®eout [j])

�
, |®c[j] | < |®eout [j] | }

bvmul(N1, N2) :

bvmul−11 (®ein ⇝ ®eout) = {®ein ⇝ ®c | ®c ∈ {⟦P⟧®ein | P ∈ C(N1)}, ∀j . |®c[j] | , 1,
�
bvsrem(®eout [j], ®c[j])

�
= 0}

bvmul−12 (®ein ⇝ ®eout | N1 |= φ1) = {®ein ⇝ ®c | ∀j .
�
bvsdiv(®eout [j], φout1 [j])

�
= ®c[j]}

bvsdiv(N1, N2) :

bvsdiv−11 (®ein ⇝ ®eout) = {®ein ⇝ ®c | ®c ∈ {⟦P⟧®ein | P ∈ C(N1)}, ∀j . |®c[j] | ≥ |®eout [j] | }

bvsdiv−12 (®ein ⇝ ®eout | N1 |= φ1)= {®e
in
⇝ ®c | ®c ∈ {⟦P⟧®ein | P ∈ C(N2)}, ∀j .

�
bvsdiv(φout1 [j], ®c[j])

�
=®eout [j]}

bvsrem(N1, N2) :

bvsrem−11 (®ein ⇝ ®eout)= {®ein ⇝ ®c | ®c ∈ {⟦P⟧®ein | P ∈ C(N1)}, ∀j . |®c[j] | ≥ |®eout [j] | }

bvsrem−12 (®ein ⇝ ®eout | N1 |= φ1)= {®e
in
⇝ ®c | ®c ∈ {⟦P⟧®ein | P ∈ C(N2)}, ∀j .

�
bvsrem(φout1 [j], ®c[j])

�
=®eout [j]}

bvand(N1, N2) :

bvand−11 (®ein ⇝ ®eout) = {®ein ⇝ ®c | ®c ∈ {⟦P⟧®ein | P ∈ C(N1)}, ∀j, i . [®e
out [j]]i = 1 =⇒ [®c[j]]i = 1}

bvand−12 (®ein ⇝ ®eout | N1 |= φ1) = {®ein ⇝ ®c | ®c ∈ {⟦P⟧®ein | P ∈ C(N2)}, ∀j .
�
bvand(φout1 [j], ®c[j])

�
= ®eout [j]}

bvor(N1, N2) :

bvor−11 (®ein ⇝ ®eout) = {®ein ⇝ ®c | ®c ∈ {⟦P⟧®ein | P ∈ C(N1)}, ∀j, i . [®e
out [j]]i = 0 =⇒ [®c[j]]i = 0}

bvor−12 (®ein ⇝ ®eout | N1 |= φ1) = {®ein ⇝ ®c ∈ {⟦P⟧®ein | P ∈ C(N2)}, ∀j .
�
bvor(φout1 [j], ®c[j])

�
= ®eout [j]}

bvashr(N1, N2) :

bvashr−11 (®ein ⇝ ®eout) = {®ein ⇝ ®c | ®c ∈ {⟦P⟧®ein | P ∈ C(N1)}, ∃1 ≤ i < w . ⟦bvashr(®c[j], i)⟧ = ®eout [j]}

bvashr−12 (®ein ⇝ ®eout | N1 |= φ1) = {®ein ⇝ ®c | ∀j .
�
bvashr(φout1 [j], ®c[j])

�
= ®eout [j]}

bvlshr(N1, N2) :

bvlshr−11 (®ein ⇝ ®eout) = {®ein ⇝ ®c | ®c ∈ {⟦P⟧®ein | P ∈ C(N1)}, ∃1 ≤ i < w . ⟦bvlshr(®c[j], i)⟧ = ®eout [j]}

bvlshr−12 (®ein ⇝ ®eout | N1 |= φ1) = {®ein ⇝ ®c | ∀j .
�
bvlshr(φout1 [j], ®c[j])

�
= ®eout [j]}

bvshl(N1, N2) :

bvshl−11 (®ein ⇝ ®eout) = {®ein ⇝ ®c | ®c ∈ {⟦P⟧®ein | P ∈ C(N1)}, ∃1 ≤ i < w . ⟦bvshl(®c[j], i)⟧ = ®eout [j]}

bvshl−12 (®ein ⇝ ®eout | N1 |= φ1) = {®ein ⇝ ®c | ∀j .
�
bvshl(φout1 [j], ®c[j])

�
= ®eout [j]}

Others F (N1, · · · , Nk) : (Universal witness function)

Fig. 7. Witness functions for bitvectors of fixed bit-widthw .

BITVEC. Fig. 7 depicts the definitions of our witness functions for the theory of bitvectors of
fixed-widthw . We follow the standard syntax and semantics of the bit-vector operators described
in the SMT-LIB v2.0 standard [Barrett et al. 2010]. We denote [n]i as i-th bit of the bitstring

representation of n (i.e., [n]i
def
= (n/2i) mod 2).

LIA and Propositional Logic. Our witness functions for LIA and SAT are defined similarly to
the witness functions for bitvectors. For example, our witness functions for integer and boolean

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 54. Publication date: January 2021.

Combining the Top-Down Propagation and Bottom-Up Enumeration for Inductive Program Synthesis 54:19

operations are defined simiarly to the corresponding ones for bitvectors (e.g., +−1
{1,2}

are similar to

bvadd−1
{1,2}

).

We use a heuristic to enforce termination of the TDP for deducing numeric output examples. The
witness functions +−12 and −−1

2 (therefore bvadd−12 and bvsub−12 as well) deduce output examples
for arguments only when their absolute values are smaller than those of given original output
examples.

Example 4.9. Recall the given hypothesis I1 − I2 when a desired output is 14 in Section 2. Suppose
we set the expected output of I1 to be 1, then the expected output of I2 is determined to be −13. To
solve the subproblem for I2, suppose we again use the hypothesis I1 − I2. If we set the expected
output of I1 to be 1 again, then the expected output of I2 is determined to be 14, which is the initial
problem. In this manner, we may repeatedly revisit the same subproblem unless we use the heuristic
to enforce termination. Using the heuristic, we do not revisit the initial problem since |14| is greater
than | − 13| = 13.

The Learn procedure using the witness functions described so far is guaranteed to terminate.

Theorem 4.10. Given a SyGuS-PBE instance where the background theory is a combination of

theories of string, fixed-width bitvectors, LIA, and SAT, the Learn procedure eventually terminates.

4.4 Optimizations

We perform useful optimizations when running the Learn procedure. We cache synthesis re-
sults for every distinct learning subproblem, which makes our algorithm an instance of dynamic
programming by avoiding solving the same subproblems multiple times. We also maintain an
additional cache to record subproblems that we are trying to solve (but not solved yet) which is
useful in the following case. Given a specification, suppose the witness function StrToInt−11 de-

duces an argument specification, which is fed into IntToStr−11 as input subsequently. The functon

IntToStr−11 may generate the original specification that StrToInt−11 initially took. To break such
a cycle, whenever the Learn procedure is given a problem which exists in the additional cache,
it does not solve it by returning the empty VSA. Lastly, we bound the maximum height of VSAs.
Though our witness functions always construct VSAs of finite height, the height may be huge if
numeric values that appear in user-provided examples are large. For the experiment, we set the
maximum height of VSAs to be 15, which is enough to avoid generating colossal VSAs.

5 EVALUATION

We have implemented our approach in a tool called Duet
6 which consists of 5K lines of OCaml

code and employs Z3 [De Moura and Bjorner 2008] as the constraint solving engine. Our tool is
available for download at https://github.com/wslee/duet.
This section evaluates our Duet system to answer the questions:

Q1: How does Duet perform on synthesis tasks from a variety of different application domains?
Q2: How does Duet compare with existing general-purpose and domain-specific synthesis

techniques?
Q3: What are the sizes of necessary components to construct solutions?

All of our experiments were conducted on Linux machines with Intel Xeon 2.6GHz CPUs and 256G
of memory.

6Domain-Unaware inductive synthesis by combining Enumeration and Top-down propagation

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 54. Publication date: January 2021.

https://github.com/wslee/duet

54:20 Woosuk Lee

(a) # Solved benchmarks. (b) # Fastest solved benchmarks.

Solved Time (Average) Time (Median) Size (Average) Size (Median)

Domain Duet CVC EU D C E D C E D C E D C E

String 204 203 132 4.1 43.1 344.2 <0.1 0.2 0.9 27.6 225.4 7.3 12.5 21 7

Bitvec 670 501 559 39.2 197.6 317.5 6.7 2.1 11.9 361.2 476.6 326.6 53.5 92 52

Circuit 569 283 567 21.5 128.7 327.1 0.3 5.1 33.6 10.5 9.4 9.6 11 11 11

Overall 1443 987 1258 27.3 146.0 324.6 4.0 2.2 11.5 175.7 290.9 150.2 15 26 12

(c) Statistics for the solving times and solution sizes. All times are in seconds. The number of benchmark
problems for the String, Bitvec and Circuit domains are 205, 750, 581, respectively (1536 in total).

Fig. 8. Main result comparing the performance of Duet, EUSolver and CVC4 (breakdown by domains). The
timeout is set to one hour.

5.1 Experimental Setup

Benchmarks. We use all benchmarks used for evaluating the statistical model-guided synthesizer
Euphony [Lee et al. 2018] 7 and the program synthesis-based circuit optimizer for homomorphic
evaluation Lobster [Lee et al. 2020]. The collected synthesis tasks are from three application
domains: i) string manipulation (String), ii) bit-vector manipulation (Bitvec), and iii) circuit
transformation (Circuit).
The String benchmarks contain 205 tasks, including 108 from the SyGuS competition, 37

queries by spreadsheet users in StackOverflow, and 60 articles about Excel programming in Exceljet.
The background theory is SLIA (String + LIA). All the benchmarks correspond to common data
manipulation tasks in spreadsheet and input-output examples are provided for each benchmark.
The semantic specifications comprise 2 ś 400 examples.

The Bitvec benchmarks comprise 750 problems from the SyGuS competition. The background
theory is BV. These problems aim at finding programs equivalent to randomly generated bit-
manipulating programs from input-output examples. The benchmarks are motivated by program
deobfuscation [Jha et al. 2010]. The semantic specifications comprise 10 ś 1000 examples.
The Circuit benchmarks comprise 581 problems. The background theory is SAT. Among

them, 212 problems used in the SyGuS competition are motivated by side-channel attacks on
cryptographic modules in embedded systems [Eldib et al. 2016]. Each problem is, given a circuit C ,
to synthesize a constant-time circuit C ′ (i.e. resilient to timing attacks) that behaves the same as C .
The other 369 problems are from [Lee et al. 2020]. These problems are motivated by optimizing
homomorphic evaluation circuits. Each problem is, given a circuit C , to synthesize a circuit C ′

of smaller multiplicative depth (the maximal number of consecutive AND operations) that is

7The benchmarks are a łharder versionž of the SyGuS competition benchmarks. The syntactic restriction in each problem

is replaced by a more general grammar. For example, the grammar for the SyGuS’18 competition (PBE-BITVEC track)

comprises 13 production rules, whereas the grammar we used comprises 38 rules.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 54. Publication date: January 2021.

Combining the Top-Down Propagation and Bottom-Up Enumeration for Inductive Program Synthesis 54:21

functionally equivalent to C . The semantic specification is a boolean formula expressing the
functional equivalence.

Baseline Solvers. We compare Duet to existing synthesis tools. For all of the three domains,
we compare with general-purpose tools EUSolver and CVC4. EUSolver won the 2016 SyGuS
competition, and CVC4 won the 2017 ś 2019 competitions [Past SyGuS Competition 2020]. Espe-
cially, the comparison with EUSolver is to confirm benefits of combining the TDP and bottom-up
enumeration. To confirm how Duet compares against domain specialization techniques, we also
compare against Euphony [Lee et al. 2018], a probabilistic model-guided synthesis tool for all of
the three domains. Euphony itself is a general-purpose tool, but it can be specialized for specific
domains by using learned probabilistic models and custom feature maps. Probabilistic models
can themselves be viewed as a kind of domain specialization, and furthermore, the feature maps
designed for the three domains allow such models to generalize well across synthesis problems
within a domain when their solutions have different probability distributions.

5.2 Effectiveness of Duet

We evaluate Duet on synthesis problems from all three domains and compare it with EUSolver

and CVC4. The initial component size n for Duet is set to be 1 for the String and Circuit domains
and 3 for the Bitvec domain. For each instance, we measure the running time of Duet and the size
of the synthesized program, using a timeout of one hour.

The results are summarized in Fig. 8 where (8a) ś (8b) show the numbers of benchmark problems
solved, and the solved with the fastest solving time respectively, and (8c) shows detailed statistics
for the synthesis times and solution sizes. Duet outperforms the other baselines in terms of the
number of solved problems: Duet is able to solve 1443 out of 1536 problems from the three domains
cumulatively, whereas EUSolver and CVC4 are able to solve 1258 and 987 problems, respectively.
Furthermore, Duet significantly outperforms the other baselines in terms of synthesis time: Duet
is the fastest solver in 1030 problems, whereas EUSolver and CVC4 are the fastest only in 101 and
339 problems, respectively.
We also measure solution quality by solution sizes in AST nodes. The solution size is not

necessarily proportional to the difficulty. For instance, given a problem comprisingm input-output
examples as a semantic specification and a syntactic specification that allows to use conditionals,
a useless solution is a conditional expression withm conditionals. Therefore, smaller solutions
are better in that they are not results of overfitting to the given input-output examples. EUSolver
generates the smallest solutions in general (the average and median sizes are 150 and 12), but Duet
also generate solutions of similar sizes: the average and median sizes are 176 and 15. On the other
hand, CVC4 often generate large solutions: the average and median sizes are 291 and 26.
Next, we study the results for each domain in detail. Table 2 shows the detailed results on

randomly chosen 30 problems (10 for each domain) solved by Duet, uniformly distributed over
solution sizes.

Result for String. Duet outperforms the other baseline solvers in terms of both scalability and
solution quality. Out of 205 problems, Duet could solve 204 problems, with average and median
times of 4.1s and 0.02s. We investigate the only one unsolved problem (univ_6-long-repeat.sl)
and conclude the synthesis problem is unrealizable (i.e., no solution exists). Therefore, Duet
virtually solved all the problems. Duet finds 98% of these solutions within a minute. On the other
hand, EUSolver could solve 132 problems, with average and median times of 6m 44s and 0.9s.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 54. Publication date: January 2021.

54:22 Woosuk Lee

Table 2. Results for 30 randomly chosen benchmark problems (10 for each domain), where |E | shows the
number of examples, Time gives synthesis time, TTD (resp. TBU) gives time spent for Top-down propagation
(resp. Bottom-up enumeration), |P | shows the size of the synthesized program (measured by number of AST
nodes), n gives the maximum size of component expressions used to construct a solution, and |C | denotes the
number of expressions in the component library.

EUSolver CVC4 Duet

Domain Benchmark |E | Time |P | Time |P | Time TTD TBU |P | n |C |

stackoverflow1 3 1887.6 9 33.8 44 0.05 0.03 0.01 11 3 118

stackoverflow2 2 2789.6 12 1.3 31 0.02 0.01 0.01 15 2 21

stackoverflow3 3 1291.3 10 234.2 122 0.02 0.01 0.01 16 2 27

stackoverflow4 3 > 1h ś 10.6 162 0.05 0.02 0.03 13 4 238

String exceljet1 3 971.8 10 89.1 106 0.03 0.01 0.02 62 2 23

exceljet2 3 > 1h ś 17.2 48 0.03 0.01 0.02 76 2 20

exceljet3 4 > 1h ś 33.2 222 0.03 0.02 0.01 23 3 46

exceljet4 4 > 1h ś 53.1 522 0.05 0.03 0.02 25 3 62

phone-10-long-repeat 400 > 1h ś 109.4 135 0.10 0.03 0.07 14 4 422

phone-9-long-repeat 400 > 1h ś 14.9 7171 0.03 0.01 0.02 18 1 13

113_10 10 3.0 25 0.5 25 4.4 4.2 0.2 15 3 464

116_1000 1000 1464.0 2113 > 1h ś 65.5 54.9 9.9 3871 3 464

icfp_gen_10.1 31 16.0 40 1.4 19 7.8 7.7 0.1 34 3 485

icfp_gen_12.18 42 > 1h ś > 1h ś 5.3 5.2 0.1 113 3 469

10_1000 1000 985.8 2215 491.6 2218 5.8 5.5 0.3 19 3 464

Bitvec 100_1000 1000 754.2 1884 563.7 2867 67.7 57.4 10.3 691 3 464

146_1000 1000 1444.1 2141 80.4 3027 72.9 62.5 10.4 1937 3 464

icfp_gen_15.13 25 > 1h ś > 1h ś 34.8 33.9 0.9 42 4 1890

12_10 10 235.5 22 868.3 16 30.8 30 0.8 46 4 1786

65_10 10 > 1h ś 139.0 75 > 1h ś ś ś 5 44023

CrCy10-sbox2-D5-102 ś 174.8 13 3.6 13 0.2 0.01 0.03 13 6 240

CrCy10-sbox2-D5-104 ś 575.9 15 52.2 16 5.2 0.3 4.1 15 9 3405

CrCy10-sbox2-D5-14 ś 360.2 14 15.4 15 0.3 0.01 0.11 15 7 449

CrCy8-P12-D9-1 ś 1690.7 17 14.8 17 10.9 0.04 8.95 21 11 4717

CrCy8-P12-D5-3 ś > 1h ś 21.1 17 1.5 0.01 1.11 21 10 2216

Circuit avg-opt_59_4 ś 799.7 11 43.2 11 1.4 0.06 1.1 11 5 1217

avg-opt_50_2 ś 2413.3 12 > 1h ś 300.4 1.5 288.7 12 8 31086

hd02.eqn_19_2 ś 1050.1 11 2469.5 13 10.4 1.24 8.53 11 5 2282

sorting_naive_319_2 ś 2455.3 12 > 1h ś 25.9 1 24.14 13 6 6608

insertion-3in_24_1 ś 1424.1 14 > 1h ś 57.7 0.3 55.3 17 8 8968

Duet outperforms EUSolver on all the problems. CVC4 could solve 203 problems, with average
and median times of 43s and 0.2s.

Ostensibly Duet and CVC4 show similar performance in terms of synthesis time, however, the
major difference is in the quality of solutions. On the contrary to Duet and EUSolverwhich priori-
tize small solutions,CVC4 sometimes generates large and unreadable solutionswhich are łoverfittedž
to provided input-output examples. For example, for the problem phone-9-long-repeat, CVC4
generates a solution of size 7171 whereas Duet generates a solution of size only 18. The average
and median sizes of solutions found by Duet are 28 and 13, whereas those of CVC4 are 225 and 21.
Both the average and median sizes of solutions found by EUSolver are smaller (7), but it is due to
the limited scalability.

Result for Bitvec. Also in the Bitvec domain, Duet outperforms the other baseline solvers in
terms of scalability. Out of 750 problems, Duet could solve 670 problems, with average and median
times of 39s and 7s. EUSolver could solve 559 problems with average and median times of 5m 18s
and 12s, and CVC4 could solve 501 problems with average and median times of 3m 19s and 2s.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 54. Publication date: January 2021.

Combining the Top-Down Propagation and Bottom-Up Enumeration for Inductive Program Synthesis 54:23

Fig. 9. Comparison between Duet and the other baseline solvers (CVC4 and EUSolver) on different domains.

Table 3. Result comparing the performance of Duet and Euphony.

Problems # Solved Time (Average) Time (Median) Size (Average) Size (Median)

Domain Total Train Test Duet Euph Duet Euph Duet Euph Duet Euph Duet Euph

String 205 123 82 81 27 10.3 211.5 0.04 1 50.5 12.2 29 11

Bitvec 750 461 289 209 243 89.2 719.6 54.6 137.9 966.6 860.2 164 116.3

Circuit 581 485 96 84 54 88.6 2049.3 25.6 3226.9 14.2 23.9 13 30

Overall 1536 1069 467 374 324 71.9 898.8 25.3 191.8 554.3 650.1 45 66

The average and median sizes of solutions found by Duet are 361 and 54. Those of CVC4 are 477
and 92. Those of EUSolver are 327 and 52. Thus, Duet generates solutions comparably as small as
solutions generated by EUSolver.

Result for Circuit. Duet is again the best in terms of scalability. In terms of solution quality,
all three solvers are similar. Out of 581 problems, Duet could solve 569 problems, with average and
median times of 22s and 0.5s. EUSolver could solve 567 problems, with average and median times
of 5m 27s and 34s. CVC4 could solve 283 problems, with average and median times of 2m 9s and 5s.
The average and median sizes of solutions found by all the tools are 10 and 11, respectively.

Analysis of Overfitting. Wemanually inspect solutions of the 30 benchmark problems in Table 2
found by Duet to investigate if Duet is prone to overfitting. In the String domain, 7 out of 10
(except stackoverflow3.sl and exceljet{2,4}.sl) solutions are the desired programs. In the
Bitvec domain, we suspect 4 out of 10 are the desired ones (łsuspectž because the correct solutions
are unknown). On the other hand, overfitting does not occur in the Circuit domain because the
semantic specifications are logical specifications.

We can mitigate overfitting by letting Duet find all solution candidates that can be found with a
current set of component expressions and choose the smallest one among them (instead of stopping
the search when a solution is found). Furthermore, providing a richer set of initial component
expressions by setting n to be a larger number also helps. That is because the more component
expressions are available, the broader space of programs is explored by Duet. For example, Duet
initially found a non-desired solution of size 25 for exceljet4.sl. When we provide a richer set
of initial components by setting n to be 4 and let Duet pick the smallest one among all consistent
programs, Duet can find the desired program of size 11 at the cost of extra overhead (0.5 sec).

Summary of Results. Duet solves harder synthesis problems more quickly compared to state-
of-the-art baseline tools in diverse domains. The three evaluated domains not only exercise different
SMT theories but also different kinds of specifications (PBE vs. logical) of the desired programs.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 54. Publication date: January 2021.

54:24 Woosuk Lee

5.3 Comparison to Euphony

We compare Duet with Euphony which learns statistical models from easily obtainable solutions.
For each domain, we use all problems that EUSolver could solve within 10 minutes each as the
training set, and we train the model for that domain using the solutions found by EUSolver as
done in [Lee et al. 2018]. The training set comprises 1069 (∼ 70%) of our benchmark problems.
The result is summarized in Table 3. In terms of the overall number of solved problems, Duet

is better than Euphony. Duet significantly outperforms Euphony in the domains of String and
Circuit. In those domains, Euphony suffers from limited scalability when attempting to synthesize
large and conditional-free expressions, whereas Duet can successfully scale to such expressions
through the divide-and-conquer. However, in the Bitvec domain, Euphony captures the statistical
regularity that exists in the solutions and effectively guides the search, thereby outperforming
Duet. Also, Euphony avoids overfitting in PBE settings by virtue of guiding synthesis toward more
likely programs, thereby generating smaller solutions than Duet.
Next, we provide Euphony with a more favorable setting where a richer training set is given.

For each domain, we generate 5 random samples for training sets each of which comprises 75% of
the benchmarks, and use a learned model which is the best in terms of the number of testing (the
other remaining) instances solved by Euphony. In the String domain, Euphony solved 44 out of
51 whereas Duet solved 50. In the Bitvec domain, Euphony solved 149 out of 187 whereas Duet
solved 167. In the Circuit domain, Euphony solved 112 out of 145 whereas Duet solved 131. Thus,
Duet still outperforms Euphony.
Overall, our results show that our approach provides significant performance gains that are

complementary to those achieved by Euphony, and it is promising to incorporate our approach
into such domain specializations.

5.4 Analysis of Component Sizes

1 2 3 4 5 6 7 8 9 10 11 12

175

350

525

700

Size of component expression

#
 S

o
lv

e
d

 b
e
n
c
h
m

a
rk

s

Fig. 10. # Solved benchmark per component size.

Figure 10 shows the frequency distribution of bench-
marks according to their maximum sizes of compo-
nent expressions when Duet finds a solution. Over-
all, the maximum size of components range from 1
to 12 with an average of 4. For the String domain,
the maximum size ranges from 1 to 6 with an av-
erage of 1.8. For the Bitvec domain, the maximum
size ranges from 3 to 5 with an average of 3.1. For
the Circuit domain, the maximum size ranges from
3 to 12 with an average of 5.9. Out of solved 1443
problems in all the domains, 92% of problems (1317)
could be solved with component expressions of size
≤ 7. Such small expressions can be quickly explored

by the bottom-up enumeration in practice. This indicates that Duet could compose large solutions
using small expressions.

6 RELATED WORK

In this section, we discuss related work on program synthesis techniques about combining deduction
and enumeration, bidirectional enumerative search strategies and decomposing synthesis problems.

Combining Deduction and Enumeration. Various previous methods have been proposed to
use deduction to effectively prune the search space explored by enumeration [Feng et al. 2018, 2017;

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 54. Publication date: January 2021.

Combining the Top-Down Propagation and Bottom-Up Enumeration for Inductive Program Synthesis 54:25

Feser et al. 2015; Frankle et al. 2016; Lee et al. 2016; Osera and Zdancewic 2015; Polikarpova et al.
2016; So and Oh 2017; Wang et al. 2017]. While enumerating solution candidates, these approaches
use a deduction engine to determine whether or not a currently considered candidate (mostly in
the form of a partial program with holes) is feasible (i.e., there may exist a solution derivable from
the partial program). Powerful deduction engines such as type checkers [Frankle et al. 2016; Osera
and Zdancewic 2015; Polikarpova et al. 2016], constraint solvers [Feng et al. 2018, 2017], or abstract
interpreters [So and Oh 2017; Wang et al. 2017] have been used for pruning the search space. On
the contrary to these methods, we use systematic enumeration to guide deduction instead of using
deductive reasoning to accelerate enumeration.
Our method is also different from another line of work that uses deduction and enumeration

separately without a synergistic combination. In FlashFill, candidate regular expressions are con-
structed by enumeration, and they are used when they can directly solve decomposed subproblems
during top-down synthesis (cf. the GeneratePosition procedure (Fig. 7) in [Gulwani 2011]). Here,
the decomposition happens irrespective of what regular expressions are available. It would be more
desirable to guide the decomposition to generate subproblems that can be eventually solved by
the available expressions. Our witness function for the Rep operator described in Section 2 demon-
strates this guided decomposition. It deduces desired outputs of the first argument similar to the
output of ConCat(x , ł.ž), which is one of the available component expressions. FlashMeta [Polozov
and Gulwani 2015] basically uses deduction to repeatedly decompose a synthesis task until all
subdivided tasks are easily solvable, but it occasionally switches to enumerative search when it is
likely to be more efficient than deduction. DryadSynth [Huang et al. 2020] repeatedly performs
custom divide-and-conquer methods and tries to solve subproblems first by deduction, and then
enumeration as the last resort if the deduction is not applicable. In these methods, enumeration and
deduction are independent of each other, whereas our method is based on a synergistic combination
of the top-down deductive search and bottom-up enumerative search.
Lastly, our work is also different from the recent work that combines the TDP and bottom-

up enumeration for web data extraction [Raza and Gulwani 2020]. The goal of the work is to
automatically synthesize a program that extracts useful information in a structured format (e.g., a
sequence of HTML nodes) from the web. It uses bottom-up enumeration to generate programs that
reveal nodes łuniformly distributedž in various aspects (called alignment patterns), independent of
any user-provided examples. This information is used to guide the TDP with a few examples to
find the desired solution that can generalize well beyond the examples. Though this combination is
also synergistic, the major limitation of the TDP ś lack of general applicability ś still remains. In
our work, the bottom-up enumeration allows the TDP to handle arbitrary SyGuS grammars.

Decomposing Synthesis Problems. Our method can be used for a broad class of SyGuS prob-
lems with arbitrary grammars, whereas the previous deductive methods to decompose a synthesis
problem into subproblems are often limited to special cases.Myth [Osera and Zdancewic 2015]
and λ2 [Feser et al. 2015] use a set of deduction rules for generating subproblems, but they are
only applicable to higher-order combinators such as map and filter. Huang et al. [Huang et al.
2020] have recently proposed three divide-and-conquer strategies. For example, they first try to
synthesize subexpressions that appear in a given specification (or, ones that only partially satisfy the
specification) and then solve the original synthesis problem using the synthesized subexpressions.
Because their method leverages a given complete logical specification, it is not applicable to PBE
tasks where a complete specification is missing.

Version space algebra-based techniques [Gulwani 2011; Polozov and Gulwani 2015] also decom-
pose specifications using deductive search, but they limit the expressiveness power of an underlying

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 54. Publication date: January 2021.

54:26 Woosuk Lee

DSL to avoid infinitely many decomposed subproblems as explained in Section 1. Furthermore, our
work is more beneficial in handling a large number of input-output examples. Our witness functions
maintain a set of multiple input-output examples and perform simultaneous decomposition on
the examples. On the other hand, the previous approach constructs a VSA for each input-output
example, and intersects the multiple VSAs afterward. The intersection-based approach does not
scale well in the number of examples because the complexity of VSA intersection is quadratic,
which may not be negligible in practice. 8 However, our method is not very sensitive to the num-
ber of examples. 9 Another popular divide-and-conquer approach [Alur et al. 2017] finds smaller
expressions that are correct on subsets of inputs, predicates that distinguish these subsets, and
combines the expressions and predicates to obtain an expression that is correct on all inputs. Our
method further improves this strategy as we have shown in Section 4.2.

Bidirectional Enumerative Search. There is a similarity between our method and the bidi-
rectional enumerative search used for synthesizing geometry constructions [Gulwani et al. 2011]
and superoptimization of assembly code [Phothilimthana et al. 2016]. Given a specification φ ≡
(φpre ,φpost) specifying the set of input and output states, the bidirectional enumerative search

algorithm maintains two sets of expressions F̃ and B̃. The set F̃ contains expressions obtained

by performing a forward enumerative search starting from the input states φpre . The set B̃ has
expressions derived by performing a backward enumerative search starting from the output states

φpost . It iteratively builds the two sets in order of increasing size until it finds expressions f ∈ F̃

and b ∈ B̃ such that the states corresponding to f and b can be matched.
Both our method and the bidirectional enumerative search aim for a goal-directed search for

solutions. However, a synergistic combination of the two search methods is missing in the bidi-
rectional enumerative search. The forward and backward enumerative algorithms are performed
separately, and one does not guide the other. In our method, however, the bottom-up enumeration
guides the top-down propagation.

7 CONCLUSION

We presented a general approach to synergistically combine the top-down propagation and bottom-
up enumeration. The top-down propagation enables scalable inductive synthesis, but it has been
limited to specific application domains. We bring the power of the top-down propagation to SyGuS
problems with arbitrary grammar by leveraging the bottom-up enumerative search, enabling a more
scalable and general-purpose synthesis strategy. We demonstrated the effectiveness of the approach
on a large number of synthesis problems from various application domains. The experimental
results show that our method outperforms existing general-purpose and domain-specific synthesis
tools.

ACKNOWLEDGMENTS

We thank the reviewers for insightful comments. We are also grateful to Hangyeol Cho for his help
in conducting the experiments. This research was supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIT) (2020R1C1C1014518) and the research
fund of Hanyang University (HY-2020-2474).

8For this reason, FlashFill/ FlashMeta is often used in a way that examples are provided in an incremental manner (e.g.,

[Wang et al. 2017] and [Raza and Gulwani 2020]).
9
Duet performs well in the Bitvec benchmarks each of which comprises up to 1,000 examples. As another example, when

solving the benchmark phone-3-long.sl in a setting where 100 examples are provided at once, Duet takes 0.1 sec whereas

FlashFill takes several minutes.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 54. Publication date: January 2021.

Combining the Top-Down Propagation and Bottom-Up Enumeration for Inductive Program Synthesis 54:27

REFERENCES

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh,

Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In Formal Methods in

Computer-Aided Design (FMCAD ’13).

Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling Enumerative Program Synthesis via Divide and

Conquer. In Proceedings of 23rd International Conference on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS ’17).

Clark W. Barrett, Aaron Stump, and Cesare Tinelli. 2010. The SMT-LIB Standard Version 2.0.

Benjamin Caulfield, Markus N. Rabe, Sanjit A. Seshia, and Stavros Tripakis. 2015. What’s Decidable about Syntax-Guided

Synthesis? arXiv:1510.08393 [cs.LO]

Leonardo De Moura and Nikolaj Bjorner. 2008. Z3: An Efficient SMT Solver. In Proceedings of the Theory and Practice of

Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,

Hungary) (TACAS’08). Springer-Verlag, Berlin, Heidelberg, 337ś340.

Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison. 1998. Biological Sequence Analysis: Probabilistic Models

of Proteins and Nucleic Acids. Cambridge University Press. https://doi.org/10.1017/CBO9780511790492

Hassan Eldib, Meng Wu, and Chao Wang. 2016. Synthesis of Fault-Attack Countermeasures for Cryptographic Circuits. In

28th International Conference on Computer Aided Verification (CAV ’16).

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program Synthesis Using Conflict-Driven Learning. In

Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (Philadelphia,

PA, USA) (PLDI 2018). Association for Computing Machinery, New York, NY, USA, 420ś435. https://doi.org/10.1145/

3192366.3192382

Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri. 2017. Component-based Synthesis of

Table Consolidation and Transformation Tasks from Examples. In Proceedings of the 38th ACM SIGPLAN Conference on

Programming Language Design and Implementation (Barcelona, Spain) (PLDI 2017).

John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Structure Transformations from Input-Output

Examples. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Portland, OR, USA) (PLDI’15). Association for Computing Machinery, New York, NY, USA, 229ś239. https://doi.org/10.

1145/2737924.2737977

Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic. 2016. Example-directed Synthesis: A Type-

theoretic Interpretation. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (St. Petersburg, FL, USA) (POPL ’16).

Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-output Examples. In Proceedings of the 38th

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL ’11).

Sumit Gulwani. 2016. Programming by Examples (and its Applications in Data Wrangling). In Verification and Synthesis of

Correct and Secure Systems. IOS Press. https://www.microsoft.com/en-us/research/publication/programming-examples-

applications-data-wrangling/

Sumit Gulwani, Vijay Anand Korthikanti, and Ashish Tiwari. 2011. Synthesizing Geometry Constructions. In Proceedings of

the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation (San Jose, California, USA)

(PLDI ’11). Association for Computing Machinery, New York, NY, USA, 50ś61. https://doi.org/10.1145/1993498.1993505

Sumit Gulwani, Alex Polozov, and Rishabh Singh. 2017. Program Synthesis. Vol. 4. NOW. 1ś119 pages. https://www.

microsoft.com/en-us/research/publication/program-synthesis/

Qinheping Hu, John Cyphert, Loris D’Antoni, and Thomas Reps. 2020. Exact and Approximate Methods for Proving

Unrealizability of Syntax-Guided Synthesis Problems. In Proceedings of the 41st ACM SIGPLAN Conference on Programming

Language Design and Implementation (London, UK) (PLDI’2020). Association for Computing Machinery, New York, NY,

USA, 1128ś1142. https://doi.org/10.1145/3385412.3385979

Kangjing Huang, Xiaokang Qiu, Peiyuan Shen, and Yanjun Wang. 2020. Reconciling Enumerative and Deductive Program

Synthesis. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation

(London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY, USA, 1159ś1174. https://doi.org/10.

1145/3385412.3386027

Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-guided Component-based Program Synthesis.

In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering (Cape Town, South Africa) (ICSE

’10).

Dileep Kini and Sumit Gulwani. 2015. FlashNormalize: Programming by Examples for Text Normalization. In Proceedings of

the 24th International Conference on Artificial Intelligence (Buenos Aires, Argentina) (IJCAI’15). AAAI Press, 776ś783.

Vu Le and Sumit Gulwani. 2014. FlashExtract: A Framework for Data Extraction by Examples. In Proceedings of the 35th

ACM SIGPLAN Conference on Programming Language Design and Implementation (Edinburgh, United Kingdom) (PLDI

’14).

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 54. Publication date: January 2021.

https://arxiv.org/abs/1510.08393
https://doi.org/10.1017/CBO9780511790492
https://doi.org/10.1145/3192366.3192382
https://doi.org/10.1145/3192366.3192382
https://doi.org/10.1145/2737924.2737977
https://doi.org/10.1145/2737924.2737977
https://www.microsoft.com/en-us/research/publication/programming-examples-applications-data-wrangling/
https://www.microsoft.com/en-us/research/publication/programming-examples-applications-data-wrangling/
https://doi.org/10.1145/1993498.1993505
https://www.microsoft.com/en-us/research/publication/program-synthesis/
https://www.microsoft.com/en-us/research/publication/program-synthesis/
https://doi.org/10.1145/3385412.3385979
https://doi.org/10.1145/3385412.3386027
https://doi.org/10.1145/3385412.3386027

54:28 Woosuk Lee

DongKwon Lee, Woosuk Lee, Hakjoo Oh, and Kwangkeun Yi. 2020. Optimizing Homomorphic Evaluation Circuits by

Program Synthesis and Term Rewriting. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language

Design and Implementation (London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY, USA,

503ś518. https://doi.org/10.1145/3385412.3385996

Mina Lee, Sunbeom So, and Hakjoo Oh. 2016. Synthesizing Regular Expressions from Examples for Introductory Automata

Assignments. In Proceedings of the 2016 ACM SIGPLAN International Conference on Generative Programming: Concepts

and Experiences (Amsterdam, Netherlands) (GPCE 2016). Association for Computing Machinery, New York, NY, USA,

70ś80. https://doi.org/10.1145/2993236.2993244

Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. 2018. Accelerating Search-Based Program Synthesis Using Learned

Probabilistic Models. SIGPLAN Not. 53, 4 (June 2018), 436ś449. https://doi.org/10.1145/3296979.3192410

Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable Multiline Program Patch Synthesis via

Symbolic Analysis. In Proceedings of the 38th International Conference on Software Engineering (Austin, Texas) (ICSE ’16).

Saul B. Needleman and Christian D. Wunsch. 1970. A general method applicable to the search for similarities in the

amino acid sequence of two proteins. Journal of Molecular Biology 48, 3 (1970), 443 ś 453. https://doi.org/10.1016/0022-

2836(70)90057-4

Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-directed Program Synthesis. In Proceedings of the 36th

ACM SIGPLAN Conference on Programming Language Design and Implementation (Portland, OR, USA) (PLDI ’15).

Past SyGuS Competition. 2020. https://sygus.org/comp/.

Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodik, and Dinakar Dhurjati. 2016. Scaling up Superoptimiza-

tion. In Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and

Operating Systems (Atlanta, Georgia, USA) (ASPLOS’16). Association for Computing Machinery, New York, NY, USA,

297ś310. https://doi.org/10.1145/2872362.2872387

Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program Synthesis from Polymorphic Refinement Types.

In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (Santa Barbara,

CA, USA) (PLDI ’16).

Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A Framework for Inductive Program Synthesis. In Proceedings of

the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications

(Pittsburgh, PA, USA) (OOPSLA 2015). Association for Computing Machinery, New York, NY, USA, 107ś126. https:

//doi.org/10.1145/2814270.2814310

Mohammad Raza and Sumit Gulwani. 2020. Web Data Extraction Using Hybrid Program Synthesis: A Combination of

Top-down and Bottom-up Inference. In Proceedings of the 2020 ACM SIGMOD International Conference on Management

of Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery, New York, NY, USA, 1967ś1978.

https://doi.org/10.1145/3318464.3380608

Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit Gulwani, Rohit Gheyi, Ryo Suzuki, and Björn

Hartmann. 2017. Learning Syntactic Program Transformations from Examples. In Proceedings of the 39th International

Conference on Software Engineering (Buenos Aires, Argentina) (ICSE’17). IEEE Press, 404ś415. https://doi.org/10.1109/

ICSE.2017.44

Sunbeom So and Hakjoo Oh. 2017. Synthesizing Imperative Programs from Examples Guided by Static Analysis. In Static

Analysis, Francesco Ranzato (Ed.). Springer International Publishing, Cham, 364ś381.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat. 2006. Combinatorial Sketching for

Finite Programs. In Proceedings of the 12th International Conference on Architectural Support for Programming Languages

and Operating Systems (San Jose, California, USA) (ASPLOS XII).

Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim, Milo M.K. Martin, and Rajeev Alur. 2013.

TRANSIT: Specifying Protocols with Concolic Snippets. In Proceedings of the 34th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (Seattle, Washington, USA) (PLDI ’13).

Xinyu Wang, Isil Dillig, and Rishabh Singh. 2017. Program Synthesis Using Abstraction Refinement. Proc. ACM Program.

Lang. 2, POPL, Article 63 (Dec. 2017), 30 pages. https://doi.org/10.1145/3158151

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 54. Publication date: January 2021.

https://doi.org/10.1145/3385412.3385996
https://doi.org/10.1145/2993236.2993244
https://doi.org/10.1145/3296979.3192410
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1016/0022-2836(70)90057-4
https://sygus.org/comp/
https://doi.org/10.1145/2872362.2872387
https://doi.org/10.1145/2814270.2814310
https://doi.org/10.1145/2814270.2814310
https://doi.org/10.1145/3318464.3380608
https://doi.org/10.1109/ICSE.2017.44
https://doi.org/10.1109/ICSE.2017.44
https://doi.org/10.1145/3158151

	Abstract
	1 Introduction
	2 Overview
	2.1 Existing Approaches
	2.2 Our Approach

	3 Preliminaries
	4 Synthesis Algorithm
	4.1 Overview
	4.2 The Learn Procedure
	4.3 Witness Functions for the SyGuS Language Constructs
	4.4 Optimizations

	5 Evaluation
	5.1 Experimental Setup
	5.2 Effectiveness of Duet
	5.3 Comparison to Euphony
	5.4 Analysis of Component Sizes

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

