
Optimizing Homomorphic Evaluation Circuit
with Program Synthesis and Term Rewriting

Dongkwon Lee, Woosuk Lee, Hakjoo Oh, Kwangkeun Yi

BS01‰�”…‚¶̄ '

…›¿�·º̇ —–‡�‰�”…‚¶̄ '· �́University�Identity�System � �̇–�”»¿�…�• …̨›�·º̇ —��„�̀ �‚ƒ�·º‡»¿��ß�‚• �̨˙¥̂ �̇ ·̌ �́‚����‰ �̂¢�˜¿„ ·́ˇ̃ ���… �̇ �̇

˙�‰����� ·̇ �́·º̇ ¥�ß�»�́ ¡„���·�.�‰ �̂¢�ß���„�̀ �� �̇̄ º� …̌”�»�̈ fi”‚̇ –̌���§̇ ���‡„�� �̈‰�”…‚¶̄ '· �́·º̇ —‡»� �̇–‚…”¿Ý¿¡����ˇ̂ …�¤�»�̀ ¶…”̇ �̌��

·º‡»¿��ß�‚• �̨� �̌�� �̈��„�̀ �‚ƒ���·�̇ –̌���§̇ ��� �̋�„ •̇ �̨»�¿º¿¡�����…›�̆ fl”�̇ ��̀ �� ‚̇ƒ�¿�̇ �·�.�‰�”…‚¶̄ '� �̇̂ �…�»�¿º�–�̀ ⁄�”�‰�”…‚¶̄ '� �̇

��̇ �…”�»���•`̇ ¿̌'�̀ ⁄̇ ��� �̋‚• �̨̂ �…��»���̀ ����̇ �̌ �̇»�¿º�”�–�̇ �·�.�‰�”…‚¶̄ '� �̇��»��”�CD-Rom ¿¡�…�• �̌ �̈�¥��̄ ‚‚ƒ�»�¿º̇ �·�.

‰�”…‚¶̄ '

ˆ�…�»�¿º�–�̀ ⁄ 10m m

Seoul National
University

Hanyang
University

Korea
University

Seoul National
University

Homomorphic Evaluation(HE) (1/3)

• Allows for computation on encrypted data

• Enables the outsourcing of private data storage/processing

Private
Data

User

Privacy Preserving Secure Computation

3rd Party

Homomorphic Evaluation(HE) (1/3)

• Allows for computation on encrypted data

• Enables the outsourcing of private data storage/processing

Encrypted
Data

Encrypted
Result

Privacy Preserving Secure Computation

Result

HE application

User

3rd Party

Application HE developer HE application

Homomorphic Evaluation(HE) (2/3)

Write code in low-level HE instructions

requires
expertise

suboptimal

Add maintenance operations
Generate/manage keys, hints

Track noise level
Choose parameters

complicated

Building HE applications

Homomorphic Evaluation(HE) (3/3)

Add maintenance operations
Generate/manage keys, hints

Track noise level
Choose parameters

Existing Homomorphic Compiler

HE applicationHE developer

Write code in low-level HE instructions

Application

Homomorphic Evaluation(HE) (3/3)

Write code in low-level HE instructions
Add maintenance operations
Generate/manage keys, hints

Track noise level
Choose parameters

Existing Homomorphic Compiler

HE application

Homomorphic
Compiler

still, suboptimal

• Generates HE applications automatically

• Optimization : several hand-written rules

Application

Hand-written
rules

Homomorphic Evaluation(HE) (2/3)

#include <iostream>
#include <fstream>
#include <integer.hxx>

int main()
{
 Integer8 a, b, c;

 cin >> a;
 cin >> b;
 c = a + b;

 cout << c;
 FINALIZE_CIRCUIT(blif_name);
}

#include "FHE.h"
#include "EncryptedArray.h"
#include <NTL/lzz_pXFactoring.h>
#include <fstream>
#include <sstream>
#include <sys/time.h>

int main(int argc, char **argv)
{
 long m=0, p=2, r=1; // Native plaintext space
 // Computations will be 'modulo p'
 long L=16; // Levels
 long c=3; // Columns in key switching matrix
 long w=64; // Hamming weight of secret key
 long d=0;
 long security = 128;
 ZZX G;
 m = FindM(security,L,c,p, d, 0, 0);
 FHEcontext context(m, p, r);
 buildModChain(context, L, c);
 FHESecKey secretKey(context);
 const FHEPubKey& publicKey = secretKey;
 G = context.alMod.getFactorsOverZZ()[0];
 secretKey.GenSecKey(w);
 addSome1DMatrices(secretKey);
 EncryptedArray ea(context, G);
 vector<long> v1;
 v1.push_back(atoi(argv[1]));
 Ctxt ct1(publicKey);
 ea.encrypt(ct1, publicKey, v1);
 v2.push_back(atoi(argv[2]));
 Ctxt ct2(publicKey);
 ea.encrypt(ct2, publicKey, v2);
 Ctxt ctSum = ct1;
 ctSum += ct2;
}

Code for homomorphic addition of two integers

Manually written
using HElib

Input to Cingulata
(a HE compiler)

Our Contributions (1/2)

HE application

Homomorphic
Compiler

• Generates HE applications automatically

Application

Hand-written
rules

Automatic, Aggressive HE optimization Framework

• Optimization : several hand-written rules• Optimization : machine found rules by program synthesis + applying by term rewriting

Program
Synthesis

Term
Rewriting

2.03 speedup×

Our Contributions (2/2)

• Learning Optimization Patterns by Program Synthesis

• Applying Learned Patterns by Term Rewriting

• Theorem : Semantic Preservation & Termination Guaranteed

• Performance (vs state-of-the-art HE Optimizer)

Optimized 19 out of 25 Applications (vs 15)

x3.71 Speedup in Maximum (vs x3.0)

x2.03 Speedup on Average (vs x1.53)

• Open Tool Available : https://github.com/dklee0501/Lobster

Automatic, Aggressive HE optimization Framework

https://github.com/dklee0501/Lobster

Our Lobster…
Learning to Optimize Boolean circuit using Synthesis and TErm Rewriting

HE
Compiler
Front-end

Synthesis-based
Rule Learner

Rule-based Optimization
via Term-Rewriting

2. Online Optimization

1. Offline Learning

 Training
Programs

 Training HE Applications

Input
Program

…

Learned Opt. Patterns

Unoptimized HE Application

Optimized
HE Application

• Offline Learning via Program Synthesis + Online Optimization via Term Rewriting

• Based on approximate common divisor problem

• : integer as a secret key

• : random integer

• : random noise for security

p
q
r (≪ |p |)

Simple HE Scheme

Encp(μ ∈ {0,1}) = pq + 2r + μ
Decp(c) = (c mod p) mod 2
Decp(Encp(μ)) = Decp(pq + 2r + μ) = μ

• For ciphertexts , the following
holds

μi ← Encp(μi)

Decp(μ1 + μ2) = μ1 + μ2
Decp(μ1 × μ2) = μ1 × μ2

• The scheme can evaluate all boolean circuits
as and in are equal to XOR
and AND

+ × ℤ2 = {0,1}

• Noise increases during homomorphic operations.

• For μi = pqi + 2ri + μi

Performance Hurdle : Growing Noise

μ1 + μ2 = p(q1 + q2) + 2(r1 + r2) + (μ1 + μ2)
μ1 × μ2 = p(pq1q2 + ⋯) + 2(2r1r2 + r1μ2 + r2μ1) + (μ1 × μ2)

noise

• if (noise) then incorrect results> p

double increase
quadratic increase

Multiplicative Depth : a Decisive Performance Factor

• Multiplicative depth : the maximum number of sequential multiplications from input to output

c1

c3

c3

c2

c1

c4

c2

c5

c1

c2

depth 4

 mult. depth

 size of p

 HE speed

 noise

What is HE optimization?

• Finding a new circuit that has smaller mult. depth

c1

c3

c3

c2

c1

c4

c2

c5

c1

c2
1

c5

c1

c3

c2

c1

c2

c4

depth 4 depth 3

HE optimization via Synthesis

Constraints Syntax+
Program Synthesis

Desired
program

HE optimization via Synthesis

same semantics

Constraints Syntax+
Program Synthesis

Desired
program

HE optimization via Synthesis

same semantics

Constraints Syntax+
Program Synthesis

Desired
program

depth-restricting syntax

HE optimization via Synthesis

same semantics depth-restricting syntax

Constraints Syntax+
Program Synthesis

Desired
program

optimized HE circuit

HE optimization via Synthesis

same semantics depth-restricting syntax

Constraints Syntax+
Optimizing
Synthesis

Desired
program

optimized HE circuit
depth 4 depth 3

Hurdle : Synthesis Scalability

Optimizing
Synthesis

too slow

Solution1 : Synthesis via Localization

Solution1 : Synthesis via Localization

Solution1 : Synthesis via Localization

Optimizing
Synthesis

Solution1 : Synthesis via Localization

scalable

Optimizing
Synthesis

Solution1 : Synthesis via Localization

Solution1 : Synthesis via Localization

Optimizing
Synthesis

Replace

Solution 2: Learning Successful Synthesis Patterns

• Offline Learning
Collect successful synthesis patterns

• Online Optimization
Applying the patterns by term rewriting

Offline Learning to Collect Opt. Patterns
Offline Learning Cycle

Collected
Opt. Patterns

…

 Training
HE Applications

Offline Learning to Collect Opt. Patterns
Offline Learning Cycle

Collected
Opt. Patterns

…

 Training
HE Applications

Offline Learning to Collect Opt. Patterns
Offline Learning Cycle

Optimizing
Synthesis

Collected
Opt. Patterns

…

 Training
HE Applications

Offline Learning to Collect Opt. Patterns
Offline Learning Cycle

Optimizing
Synthesis

Collected
Opt. Patterns

…

 Training
HE Applications

Offline Learning to Collect Opt. Patterns
Offline Learning Cycle

Optimizing
Synthesis

Collected
Opt. Patterns

…Replace

 Training
HE Applications

Offline Learning to Collect Opt. Patterns
Offline Learning Cycle

Collected
Opt. Patterns

…

 Training
HE Applications

Optimizing
Synthesis

Offline Learning to Collect Opt. Patterns
Offline Learning Cycle

Collected
Opt. Patterns

…

 Training
HE Applications

Optimizing
Synthesis

Offline Learning to Collect Opt. Patterns
Offline Learning Cycle

Collected
Opt. Patterns

 Training
HE Applications

Optimizing
Synthesis

Offline Learning to Collect Opt. Patterns
Offline Learning Cycle

Collected
Opt. Patterns

 Training
HE Applications

Optimizing
Synthesis

Offline Learning to Collect Opt. Patterns
Offline Learning Cycle Training

HE Applications

186 Opt. patterns

Collected
Opt. Patterns

Learned Optimization Patterns : examples

Online Rule-based Optimization
Offline Learning Cycle

Learned
Opt. Patterns

Input
HE application

Online Rule-based Optimization
Offline Learning Cycle

Apply
Opt. Patterns

Learned
Opt. Patterns

Input
HE application

Online Rule-based Optimization
Offline Learning Cycle

Apply
Opt. Patterns

Replace

Input
HE application

Applying Learned Optimization Patterns (1/2)

d1

d2

d1

d2

d3

d4

d5

?

Learned
Opt. Patterns

New Input Circuit
Optimization

Syntactic Matching is Not Effective

Applying Learned Optimization Patterns (1/2)

?Mismatch

New Input Circuit
Optimization

Learned
Opt. Patterns

Syntactic Matching is Not Effective

Applying Learned Optimization Patterns (2/2)

?
d1

d2

d1

d2

d3

d4

d5

New Input Circuit
Optimization

Normalization + Equational Matching

Learned
Opt. Patterns

Applying Learned Optimization Patterns (2/2)

?
d1

d2

d1

d2

d3

d4

d5

New Input Circuit
Optimization

Normalization + Equational Matching

Learned
Opt. Patterns

Applying Learned Optimization Patterns (2/2)

c5

n1

n1

c4

n1

c5

1
c4

?
d1

d2

d1

d2

d3

d4

d5

Normalized
Opt. Patterns

New Input Circuit
Optimization

Normalization + Equational Matching

Applying Learned Optimization Patterns (2/2)

c5

n1

n1

c4

n1

c5

1
c4

?
d1

d2

d1

d2

d3

d4

d5

New Input Circuit
Optimization

Normalization + Equational Matching

old

target

newNormalized
Opt. Patterns

target'

c5

n1

n1

c4

Applying Learned Optimization Patterns (2/2)

n1

c5

1
c4

d1

d2

d1

d2

d3

d4

d5

New Input Circuit
Optimization

Normalization + Equational Matching

old

target

newNormalized
Opt. Patterns

?

Find substitution σ

(considering commutativity)

Applying Learned Optimization Patterns (2/2)

c5

n1

n1

c4

n1

c5

1
c4

d1

d2

d1

d2

d3

d4

d5

New Input Circuit
Optimization

Normalization + Equational Matching

old

target

newNormalized
Opt. Patterns

?

σ = {n1 ↦ d1 and d2, Find substitution σ

(considering commutativity)

Applying Learned Optimization Patterns (2/2)

c5

n1

n1

c4

n1

c5

1
c4

d1

d2

d1

d2

d3

d4

d5

New Input Circuit
Optimization

Normalization + Equational Matching

old

target

newNormalized
Opt. Patterns

?

σ = {n1 ↦ d1 and d2,
 c4 ↦ d3 xor d4,

Find substitution σ

(considering commutativity)

Applying Learned Optimization Patterns (2/2)

c5

n1

n1

c4

n1

c5

1
c4

d1

d2

d1

d2

d3

d4

d5

New Input Circuit
Optimization

σ = {n1 ↦ d1 and d2,
 c4 ↦ d3 xor d4,
 c5 ↦ d5}

Find substitution σ

(considering commutativity)

Normalization + Equational Matching

old

target

newNormalized
Opt. Patterns

?

Applying Learned Optimization Patterns (2/2)

c5

n1

n1

c4

n1

c5

1
c4

d1

d2

d1

d2

d3

d4

d5

New Input Circuit
Optimization

Normalization + Equational Matching

old

target

newNormalized
Opt. Patterns

?

Apply substitution σ
σ = {n1 ↦ d1 and d2,
 c4 ↦ d3 xor d4,
 c5 ↦ d5}

Find substitution σ

(considering commutativity)

Applying Learned Optimization Patterns (2/2)

c5

n1

n1

c4

n1

c5

1
c4

d1

d2

d1

d2

d3

d4

d5

New Input Circuit
Optimization

Normalization + Equational Matching

old

target

newNormalized
Opt. Patterns

Apply substitution σ

d3

d4

d1

d2

d5

1

optimized target

σ = {n1 ↦ d1 and d2,
 c4 ↦ d3 xor d4,
 c5 ↦ d5}

Find substitution σ

(considering commutativity)

Applying Learned Optimization Patterns (2/2)

New Input Circuit
Optimization

Apply substitution σ

d3

d4

d1

d2

d5

1d1

d2

d1

d2

d3

d4

d5

depth 3 depth 2

Normalization + Equational Matching

c5

n1

n1

c4

n1

c5

1
c4

Normalized
Opt. Patterns

old

target

new

optimized target

σ = {n1 ↦ d1 and d2,
 c4 ↦ d3 xor d4,
 c5 ↦ d5}

Find substitution σ

(considering commutativity)

Applying Learned Optimization Patterns
Formal properties

Applying an
opt. pattern

…

(Soundness) semantics unchanged

(Termination) finitely many rule applications

Lobster Performance (1/5)

• 25 HE algorithms from 4 sources
Cingulata benchmarks
Sorting benchmarks
Hackers Delight benchmarks
EPFL benchmarks

Benchmarks

2 HE friendly algorithms
(medical, sorting)

4 privacy-preserving sorting algorithms
(merge, insert, bubble, odd-even)

12 Homomorphic
bitwise operations

7 EPFL combinational benchmark suite
(to test circuit optimizer)

Lobster Performance (2/5)
Optimization Results of Lobster and the baseline

Speedup Depth Reduction

Cingulata
benchmarks

Sorting
benchmarks

Hackers Delight
benchmarks

EPFL benchmarks

Lobster Performance (2/5)
Optimization Results of Lobster and the baseline

Speedup Depth Reduction

Hand-written-rule based
HE circuit optimizer

Lobster Performance (2/5)
Optimization Results of Lobster and the baseline

Speedup Depth Reduction

Success rate

Speedup

Depth Reduction

Lobster Performance (2/5)
Optimization Results of Lobster and the baseline

Speedup Depth Reduction

Optimized 15 benchmarks Optimized 19 benchmarks

Lobster Performance (2/5)
Optimization Results of Lobster and the baseline

Speedup Depth Reduction

x3.71 speedup

x3.0 speedup

Lobster Performance (2/5)
Optimization Results of Lobster and the baseline

Speedup Depth Reduction

x2.03 speedupx1.53 speedup

Lobster Performance (2/5)
Optimization Results of Lobster and the baseline

Speedup Depth Reduction

15.7% 21.9%

Lobster Performance (2/5)
Optimization Results of Lobster and the baseline

Speedup Depth Reduction

Machine-found optimization rules can
work better than hand-written rules

Lobster Performance (3/5)
Efficacy of Reusing Learned Optimization Patterns

Depth Reduction

Lobster Performance (3/5)
Efficacy of Reusing Learned Optimization Patterns

Depth Reduction

Optimized 13 benchmarks Optimized 19 benchmarks

Lobster Performance (3/5)
Efficacy of Reusing Learned Optimization Patterns

Depth Reduction

10.0% 21.9%

Lobster Performance (3/5)
Efficacy of Reusing Learned Optimization Patterns

Depth Reduction

Reusing the learned patterns
improves the scalability of Lobster

Lobster Performance (4/5)
Effectiveness of Equational Term Rewriting

Depth Reduction

Lobster Performance (4/5)

Depth Reduction

Optimized 9 benchmarks Optimized 19 benchmarks

Effectiveness of Equational Term Rewriting

Lobster Performance (4/5)

Depth Reduction

17.3% 21.9%

Effectiveness of Equational Term Rewriting

Lobster Performance (4/5)

Depth Reduction

Equational term rewriting allows
to flexibly apply the learned patterns

Effectiveness of Equational Term Rewriting

Depth Reduction

Effectiveness of Equational Term Rewriting

Optimizing Homomorphic Evaluation Circuits by Program Synthesis and Term Rewriting PLDI ’20, June 15–20, 2020, London, UK

Figure 5. E�cacy of equational rewriting

De
pt

h
Re

du
ct

io
n

Ra
tio

0%

10%

20%

30%

40%

50%

Benchmarks

ca
rdio

mso
rt

iso
rt

bso
rt

hd
04

hd
05

hd
06

hd
09

hd
11

hd
12

ca
vlc i2c

int
2fl

oa
t
rou

ter

Two-fold cross validation Leave-one-out cross validation

Figure 6. Sensitivity to changes in a training set; comparison
of the result of two-fold cross validation with that of leave-
one-out cross validation

matching instead of equational matching when conducting
term rewriting and applies the learned rules without the
normalization process. Fig. 5 summarizes the results. The
variant can optimize only 9 benchmarks (L������ can opti-
mize 19). We conclude that overall, the rule normalization
and equational term rewriting play crucial roles in giving
�exibility to the rewriting procedure.

5.6 Sensitivity to Changes in a Training Set
We now investigate the e�ects of changing the number of
training programs. We have conducted 2-fold cross valida-
tion; for each of four benchmark categories (Cingulata, Sort-
ing, HD, EPFL), we used rules learned from the smaller half
and applied them to the other larger half, and compare with
the result of leave-one-out cross validation. The 14 bench-
marks on the x-axis in Fig. 6 are testing benchmarks, and
the other 11 benchmarks are training benchmarks. As can
be seen in Fig. 6 that summarizes the results, the smaller
set of tranining programs does not lead to signi�cant per-
formance degradation. The cardio, cavlc, i2c, int2float and
router benchmarks observe optimization e�ects less power-
ful than before, but the other benchmarks remain the same.
We conclude that overall, the performance of L������ is not
sensitive to changes in a given set of training programs.

6 Related Work
FHE Compilers. FHE compilers [4, 15, 22, 23] allow pro-

grammers to easily write FHE applications without detailed
knowledge of the underlying FHE schemes. These compilers
also provide optimizations for reducing the multiplicative
depth of the compiled circuits. However, the optimization
rules used bymodern FHE compilers are hand-written, which
requires manual e�ort and is likely to be sub-optimal. In this
paper, we aimed to automatically generate optimization rules
that can be used by existing compilers.

Cingulata [15] is an open-source compiler that translates
high-level programs written in C++ into boolean circuits.
Cingulata also supports optimization of circuits for reduc-
ing multiplicative depth. It uses ABC [12], an open-source
boolean circuit optimizer. Cingulata also usesmore advanced,
yet hand-written, circuit optimization techniques specially
designed for minimizing multiplicative depth [5, 14]. In par-
ticular, the multi-start heuristic by Carpov et al. [14], which
we used for comparison with L������ in Section 5, shows a
signi�cant reduction in multiplicative depths for their bench-
marks. However, we note that the benchmark circuits used
in [14] are “intendedly suboptimal to test the ability of opti-
mization tools” [1]. By contrast, the benchmarks used in this
paper include circuits that are already carefully optimized in
terms of FHE evaluation as explained in Section 5.1, thereby
leaving relatively small room for depth reduction. We ob-
serve the heuristic in [14] does not perform verywell for such
a harder optimization task. We recently implemented Aubry
et al. [5] and observed that Aubry et al. [5] is slightly better
than Carpov et al. [14] (16.9% vs. 15.7% in terms of geometric
mean of depth reduction ratio) for our benchmarks.

R������� [4] is a compiler for translating programs writ-
ten in Julia into circuits for homomorphic evaluation. It opti-
mizes the size and multiplicative depth of the circuits using
symbolic execution. It also automatically selects the parame-
ters of FHE schemes and the plain text encoding for input

Lobster Performance (5/5)

Lobster Performance (5/5)

Depth Reduction

Effectiveness of Equational Term Rewriting

Optimizing Homomorphic Evaluation Circuits by Program Synthesis and Term Rewriting PLDI ’20, June 15–20, 2020, London, UK

Figure 5. E�cacy of equational rewriting

De
pt

h
Re

du
ct

io
n

Ra
tio

0%

10%

20%

30%

40%

50%

Benchmarks

ca
rdio

mso
rt

iso
rt

bso
rt

hd
04

hd
05

hd
06

hd
09

hd
11

hd
12

ca
vlc i2c

int
2fl

oa
t
rou

ter

Two-fold cross validation Leave-one-out cross validation

Figure 6. Sensitivity to changes in a training set; comparison
of the result of two-fold cross validation with that of leave-
one-out cross validation

matching instead of equational matching when conducting
term rewriting and applies the learned rules without the
normalization process. Fig. 5 summarizes the results. The
variant can optimize only 9 benchmarks (L������ can opti-
mize 19). We conclude that overall, the rule normalization
and equational term rewriting play crucial roles in giving
�exibility to the rewriting procedure.

5.6 Sensitivity to Changes in a Training Set
We now investigate the e�ects of changing the number of
training programs. We have conducted 2-fold cross valida-
tion; for each of four benchmark categories (Cingulata, Sort-
ing, HD, EPFL), we used rules learned from the smaller half
and applied them to the other larger half, and compare with
the result of leave-one-out cross validation. The 14 bench-
marks on the x-axis in Fig. 6 are testing benchmarks, and
the other 11 benchmarks are training benchmarks. As can
be seen in Fig. 6 that summarizes the results, the smaller
set of tranining programs does not lead to signi�cant per-
formance degradation. The cardio, cavlc, i2c, int2float and
router benchmarks observe optimization e�ects less power-
ful than before, but the other benchmarks remain the same.
We conclude that overall, the performance of L������ is not
sensitive to changes in a given set of training programs.

6 Related Work
FHE Compilers. FHE compilers [4, 15, 22, 23] allow pro-

grammers to easily write FHE applications without detailed
knowledge of the underlying FHE schemes. These compilers
also provide optimizations for reducing the multiplicative
depth of the compiled circuits. However, the optimization
rules used bymodern FHE compilers are hand-written, which
requires manual e�ort and is likely to be sub-optimal. In this
paper, we aimed to automatically generate optimization rules
that can be used by existing compilers.

Cingulata [15] is an open-source compiler that translates
high-level programs written in C++ into boolean circuits.
Cingulata also supports optimization of circuits for reduc-
ing multiplicative depth. It uses ABC [12], an open-source
boolean circuit optimizer. Cingulata also usesmore advanced,
yet hand-written, circuit optimization techniques specially
designed for minimizing multiplicative depth [5, 14]. In par-
ticular, the multi-start heuristic by Carpov et al. [14], which
we used for comparison with L������ in Section 5, shows a
signi�cant reduction in multiplicative depths for their bench-
marks. However, we note that the benchmark circuits used
in [14] are “intendedly suboptimal to test the ability of opti-
mization tools” [1]. By contrast, the benchmarks used in this
paper include circuits that are already carefully optimized in
terms of FHE evaluation as explained in Section 5.1, thereby
leaving relatively small room for depth reduction. We ob-
serve the heuristic in [14] does not perform verywell for such
a harder optimization task. We recently implemented Aubry
et al. [5] and observed that Aubry et al. [5] is slightly better
than Carpov et al. [14] (16.9% vs. 15.7% in terms of geometric
mean of depth reduction ratio) for our benchmarks.

R������� [4] is a compiler for translating programs writ-
ten in Julia into circuits for homomorphic evaluation. It opti-
mizes the size and multiplicative depth of the circuits using
symbolic execution. It also automatically selects the parame-
ters of FHE schemes and the plain text encoding for input

Lobster is not very sensitive to changes
in a training set.

In the Paper…

• Detailed description of synthesis via localization

• Formalized Equational Term Rewriting

• Detailed description of experiment results

Thank you!

