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Abstract

We present a new and general method for optimizing homo-
morphic evaluation circuits. Although fully homomorphic
encryption (FHE) holds the promise of enabling safe and
secure third party computation, building FHE applications
has been challenging due to their high computational costs.
Domain-specific optimizations require a great deal of ex-
pertise on the underlying FHE schemes, and FHE compilers
that aims to lower the hurdle, generate outcomes that are
typically sub-optimal as they rely on manually-developed
optimization rules. In this paper, based on the prior work
of FHE compilers, we propose a method for automatically
learning and using optimization rules for FHE circuits. Our
method focuses on reducing the maximum multiplicative
depth, the decisive performance bottleneck, of FHE circuits
by combining program synthesis and term rewriting. It first
uses program synthesis to learn equivalences of small cir-
cuits as rewrite rules from a set of training circuits. Then, we
perform term rewriting on the input circuit to obtain a new
circuit that has lower multiplicative depth. Our rewriting
method maximally generalizes the learned rules based on
the equational matching and its soundness and termination
properties are formally proven. Experimental results show
that our method generates circuits that can be homomorphi-
cally evaluated 1.18x ś 3.71x faster (with the geometric mean
of 2.05x) than the state-of-the-art method. Our method is
also orthogonal to existing domain-specific optimizations.
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1 Introduction

Fully Homomorphic Encryption (FHE) [30] enables safe and
secure third-party computation with private data because
it enables any computation on encrypted data without the
decryption key. Because the cloud can perform any computa-
tion on encrypted data without learning anything about the
data itself, the clients can safely upload their encrypted data
without any need to trust the software/hardware vendors of
the cloud.
However, building FHE applications has been challeng-

ing at the moment because of their high computational
costs. Though building FHE applications itself does not re-
quire much expertise thanks to off-the-shelf libraries of FHE
schemes [31, 32, 44], when naively implemented, even with
the best FHE schemes [10, 18], FHE applications incur slow-
down factors of orders of magnitudes compared to their
plaintext version. One of the key challenges is therefore re-
ducing the costs of FHE applications amenable to practical
use.

Existing Approaches. There have been two approaches
ś domain-specific optimizations and optimizing FHE compil-
ers ś for reducing the costs of FHE applications, but they are
still less powerful than desirable. Various domain-specific
FHE optimization techniques have been successfully devel-
oped, but developing such techniques requires a great deal of
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expertise on the underlying FHE schemes. For example, op-
timizations such as rescaling [23], data movement [38] and
batching [39], and heuristics for encryption parameter selec-
tion [23, 25] enable several orders of magnitude speedups
in a wide range of FHE applications (such as image recogni-
tion [23], statistical analysis [38], sorting [17], bioinformat-
ics [19], database [8], and static program analysis [37]), yet
required a great deal of expertise in cryptography. Lowering
this hurdle of expertise is a goal of FHE compilers, which,
equipped with FHE optimization techniques, automatically
transform conventional high-level programs into optimized
FHE code. For example, Ramparts [4], Cingulata [15] and
Alchemy [22] take programs written in a high-level lan-
guage (e.g., Julia, C++, a custom DSL, resp.) and transform
them into arithmetic circuit representations which can be
evaluated using a backend FHE scheme. However, though
the users do not have to concern about low-level details of
underlying schemes when writing applications, they need to
write FHE-friendly algorithms [16, 17, 19, 38] to achieve the
desired efficiency, which still requires expertise. Furthermore,
state-of-the-art compilers rely on hand-written optimization
rules and devising such rules requires expertise and is likely
to be sub-optimal.

Our Approach. In this paper, based on the prior work
of FHE compilers, we propose a novel and general method
for optimizing FHE boolean circuits that outperforms ex-
isting automatic FHE optimization techniques. Our method
focuses on reducing the number of nested multiplications
and achieves sizeable optimizations even for existing domain-
specific manually optimized results.

Our setting of the optimization problem is simple. Let c be
an arithmetic code that can be evaluated using FHE schemes,
which can be either generated by a FHE compiler or writ-
ten by a developer. Optimization is to find a new circuit c ′

of lower computational cost while guaranteeing the same
semantics as the original. Because the decisive performance
bottleneck in homomorphic computation is the nested depth
of multiplications [4, 15, 17, 49], we set the computation
cost to be measured using the maximum multiplicative depth,
which is simply the maximum number of sequential multipli-
cations required to perform the computation. For example,
the circuit c(x1,x2,x3,x4,x5) = ((x1x2)x3)x4 + x5 has mul-
tiplicative depth 3. The lower the multiplicative depth is,
the more efficiently a circuit can be evaluated. For example,
we can optimize c by replacing it with c ′(x1,x2,x3,x4,x5) =
(x1x2)(x3x4) + x5 that has depth 2.
To achieve this critical optimization for homomorphic

computation circuits as much as possible, we combine two
techniques: program synthesis and term rewriting. Fig. 1
depicts our approach.

• Our method first automatically learns equivalences
of small circuits from a set of training circuits using
the program synthesis technique and then uses the

learned equivalences to optimize unseen circuits. To
learn such equivalences, we partition each training
circuit into multiple sub-parts and synthesize their
equivalent counterparts of smaller depth.
These machine-found optimization patterns are so sur-
prisingly aggressive that we can hardly imagine them
from human-devised optimization techniques.
• Next, armored with these automatically learned equiv-
alences as rewrite rules, we perform term rewriting on
the input circuit to obtain a new circuit that has lower
multiplicative depth. We maximally generalize what
have been learned from training circuits by giving flex-
ibility to the rewriting procedure: our method is based
on the equational matching instead of the syntactic
matching. Our rewriting method is proven to be sound
and terminating.

We implement our method atop Cingulata [21], a widely
used FHE compiler and evaluate our method on 18 FHE ap-
plications from diverse domains (statistical analysis, sorting,
medical diagnosis, low-level algorithm). We learn rewrite
rules from a set of Cingulata-generated Boolean circuits
and apply the rules into other circuits.1 On average, our
method generates Boolean circuits that can be homomor-
phically evaluated 1.18x ś 3.71x faster (with the geometric
mean of 2.05x) than the state-of-the-art method [14].

Contributions.

• A novel general method for optimizing homomorphic
evaluation circuits: we first learn rewrite rules from a
set of training Boolean circuits using program synthe-
sis and then perform term-rewriting on a given new
circuit. The soundness and termination properties of
this rewriting system are formally proven.
• Confirming the method’s effectiveness in a realistic
setting ś the method outperforms existing automatic
FHE optimization techniques, and even shows sizeable
optimizations for domain-specific manually optimized
results.

2 Problem Definition

Wedefine the problem ofminimizing themultiplicative depth
of Boolean circuits. We first provide background on homo-
morphic encryption (Section 2.1) and Boolean circuits (Sec-
tion 2.2). In Section 2.3, we formally state the problem.

2.1 Homomorphic Encryption

A fully homomorphic encryption (FHE) scheme with binary
plaintext space Z2 = {0, 1} can be described by the interface:

Encpk : Z2 → Ω Decsk : Ω → Z2
Addpk : Ω × Ω → Ω Mulpk : Ω × Ω → Ω

1Although the paper targets Boolean circuits, themethod can also be directly

applied to arithmetic circuits.
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Figure 1. Overview of the system.

where pk is a public key, sk is a secret key, Ω is a ciphertext
space (e.g. large cardinality set such as Zq , i.e., integers mod-
ulo an integer q). For all plaintextsm1,m2 ∈ Z2, the interface
should satisfy the following algebraic properties:

Decsk (Addpk (Encpk (m1), Encpk (m2))) =m1 +m2,

Decsk (Mulpk (Encpk (m1), Encpk (m2))) =m1 ×m2.

Note that such a scheme is able to potentially evaluate all
Boolean circuits as addition and multiplication in Z2 corre-
spond to XOR and AND operations.

As an instance, let us consider a simple symmetric version
(where only a secret key is used for both encryption and
decryption) of the HE scheme [24] based on approximate
common divisor problems [34]:

• The secret key (sk) is a random integer p.
• For a plaintextm, Enc(m) outputs pq+ 2r +m, where q
and r are randomly chosen integers such that |r | ≪ |p |.
r is a noise for ensuring semantic security [40].
• For a ciphertext c̄ , Dec(c̄) outputs ((c̄ mod p) mod 2).
• For ciphertexts c̄1 and c̄2, Add(c̄1, c̄2) outputs c̄1 + c̄2.
• For ciphertexts c̄1 and c̄2, Mul(c̄1, c̄2) outputs c̄1 × c̄2.

For ciphertexts c̄1 ← Enc(m1) and c̄2 ← Enc(m2), we know
each c̄i is of the form c̄i = pqi + 2ri +mi for some integer
qi and noise ri . Hence Dec(c̄i ) = (c̄i mod p) mod 2) =mi , if
|2ri +mi | < p/2. Then, the following equations hold:

c̄1 + c̄2 = p(q1 + q2) + 2(r1 + r2) +m1 +m2︸                    ︷︷                    ︸
noiseAdd

c̄1 × c̄2 = p(pq1q2 + · · · ) + 2(2r1r2 + r1m2 + r2m1) +m1m2︸                                   ︷︷                                   ︸
noiseMult

Based on these properties, we can show that

Dec(c̄1 + c̄2) =m1 +m2 and Dec(c̄1 × c̄2) =m1 ·m2

if the absolute values of noiseAdd and noiseMult are less than
p/2. Note that the noise in the resulting ciphertext increases
during homomorphic addition and multiplication (twice and
quadratically as much noise as before respectively). If the
noise becomes larger than p/2, the decryption result of the
scheme will be spoiled. As long as the noise is managed, the
scheme is able to potentially evaluate all Boolean circuits.

Because managing the noise growth is very expensive and
the noise growth induced by multiplication is much larger
than that by addition, the performance of homomorphic
evaluation is often measured by the maximum multiplicative

depth of evaluated circuits. The maximum multiplicative
depth influences parameters of a HE scheme. Minimizing the
multiplicative depth results in not only smaller ciphertexts
but also less overall execution time. For example, to support
a large number of consecutive multiplications, the secret key
p should also be huge in the aforementioned scheme, and it
increases overall computational costs. Current FHE schemes
are leveled (also called somewhat homomorphic) in that for
fixed encryption parameters they only support computation
of a particular depth.2

2.2 Boolean Circuit and Multiplicative Depth

Boolean Circuit. A Boolean circuit c ∈ C is inductively
defined as follows:

c → ∧(c, c) | ⊕(c, c) | x | 0 | 1

where ∧ and ⊕ denote AND and XOR respectively, and x

denotes an input variable. The grammar is functionally com-
plete because any Boolean functions can be expressed using
the grammar. For simplicity, we assume that circuits have a
single output value. We will often denote 1 ⊕ c or c ⊕ 1 as
¬c . In addition, we will use infix notation for ⊕ and ∧.

Multiplicative Depth. Let ℓ : C→ N be a function that
computes the multiplicative depth of a circuit, which is in-
ductively defined as follows:

ℓ(c) =




1 +maxi ∈{1,2} ℓ(ci ) (c = ∧(c1, c2))
maxi ∈{1,2} ℓ(ci ) (c = ⊕(c1, c2))

0 (otherwise)

Critical Path. The input-to-output paths with the maxi-
mal number of AND gates are called critical paths. A set of
critical paths, denoted P(c), of a circuit c is a set of strings
over the alphabet of positive integers, which is inductively
defined as follows:

2A leveled scheme may be turned into a fully homomorphic one by intro-

ducing a bootstrapping operation [30], which is computationally heavy.
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• If c = x or 1, P(c)
def
= {ϵ}, where ϵ is the empty string.

• If c = f (c1, c2) where f ∈ {∧, ⊕}, then

P(c)
def
=

⋃

i ∈argmax1≤j≤2 ℓ(c j )

{ip | p ∈ P(ci )}

A set of critical positions CP(c) consists of all prefixes of
strings in P(c).

Example 1. Consider a circuit c(v1,v2,v3,v4) defined as

v1 ∧ (1 ⊕ (v4 ∧ (1 ⊕ (v2 ∧v3)))).

The multiplicative depth of c , ℓ(c), is 3 because there are three

consecutive AND operations performed on v2 and v3. The set

P(c) of critical paths in c is

P(c) = {2p | p ∈ P(1 ⊕ (v4 ∧ (1 ⊕ (v2 ∧v3))))}
= {22p | p ∈ P(v4 ∧ (1 ⊕ (v2 ∧v3)))}
= {222p | p ∈ P(1 ⊕ (v2 ∧v3))}
= {2222p | p ∈ P(v2 ∧v3)}
= {22221, 22222}

The set CP(c) of critical positions is:

{ϵ, 2, 22, 222, 2222, 22221, 22222}.

Note that in order to decrease the overall multiplicative
depth of a Boolean circuit, all the parallel critical paths of the
circuit must be rewritten. The depth of a critical path can be
reduced if we reduce the depth of a sub-circuit at a critical
position.

2.3 Problem

Given a Boolean circuit c ∈ C whose input variables are
x1, · · · ,xn , we aim to find a semantically equivalent circuit
c ′ ∈ C whose depth is smaller than c . Formally, our goal is
to find c ′ such that

∀xi . c(x1, · · · ,xn ) ⇐⇒ c ′(x1, · · · ,xn ), ℓ(c) > ℓ(c
′). (1)

In this paper, we propose to address this problem by com-
bining program synthesis and term rewriting.

3 Informal Description

In this section, we illustrate our approach with examples.
Our approach consists of offline and online phases (Figure 1).

Offline Learning via Program Synthesis. In the offline
phase, we use program synthesis to learn a set of rewrite
rules from training circuits. Suppose we have the circuit c in
Example 1 in the training set:

c
def
= v1 ∧ (¬(v4 ∧ (¬(v2 ∧v3)))).

The depth of this circuit is 3 and we would like to find a
semantically-equivalent circuit c ′ with a smaller depth (i.e.
ℓ(c ′) ≤ 2). To do so, we formulate the task as an instance
of the syntax-guided synthesis (SyGuS) problem [2]. The
formulation comprises a syntactic specification, in the form
of a context-free grammar that constrains the space of pos-
sible programs, and a semantic specification, in the form of

a logical formula that defines a correctness condition. The
syntactic specification for c ′ is the grammar:

S → d2
d2 → d1 ∧ d1 | d2 ⊕ d2 | d1
d1 → d0 ∧ d0 | d1 ⊕ d1 | d0
d0 → 0 | 1 | v1 | v2 | v3 | v4

where S denotes the start symbol, and each non-terminal
symbol di denotes circuits of multiplicative depth ≤ i . The
semantic specification for c ′ is given as a logical formula:

∀v1,v2,v3,v4. c(v1,v2,v3,v4) ⇐⇒ c ′(v1,v2,v3,v4)

which enforces c ′ to be semantically equivalent to c . Given
this SyGuS formulation, an off-the-shelf program synthesizer
(e.g. [3]) is able to find the following circuit c ′:

c ′
def
= ((¬(v3 ∧v2)) ∧ (v1 ∧v4)) ⊕ v1

which has multiplicative depth 2.
Once we obtain a pair (c, c ′) of original and optimized

circuits, we simplify c and c ′ by replacing sub-circuits that are
equivalent modulo commutativity with a new fresh variable.
In this example, ¬(v2 ∧ v3) in c and ¬(v3 ∧ v2) in c ′ are
equivalent modulo commutativity and therefore we replace
them by a new variable x , which simplifies c and c ′ into
v1 ∧ (¬(v4 ∧ x)) and (x ∧ (v1 ∧v4)) ⊕ v1, respectively. Note
that the simplified circuits are still semantically equivalent.
We replace sub-circuits with a variable after we check for
equivalence using a SAT solver.
The purpose of this simplification step is to generalize

the knowledge and maximize the possibility of applying the
rewrite rule for optimization in the online phase. However,
care is needed not to over-generalize and destroy the syn-
tactic structures of the circuits. For example, if we aim to
replace all semantically equivalent sub-circuits with a new
fresh variable, we would obtain x ⇐⇒ x , which is useless.
In summary, the offline learning phase produces the fol-

lowing rewrite rule:

v1 ∧ (¬(v4 ∧ x)) → (x ∧ (v1 ∧v4)) ⊕ v1. (2)

Online Optimization via Term Rewriting. In the on-
line phase, we use the learned rewrite rule to optimize un-
seen circuits. Suppose we want to optimize the following
circuit whose multiplicative depth is 4:

((v5 ∧v6) ∧ (¬((v7 ∧v8) ∧ (¬((v8 ∧v9) ∧ (v9 ∧v7)))))). (3)

To optimize the circuit, we first compare it with the left-hand
side of the learned rewrite rule (i.e. v1 ∧ (¬(v4 ∧ x))), and
find a substitution σ that makes the two circuits equivalent.
For example, our matching algorithm in Section 4 is able to
find the following substitution:

σ =





v1 7→ v5 ∧v6
v4 7→ v7 ∧v8
x 7→ (¬(v8 ∧v9) ∧ (v9 ∧v7))




.
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Note that σ (v1∧(¬(v4∧x))) is equivalent to the circuit in (3).
Next, we apply the substitution to the right-hand side of the
rewrite rule, obtaining the following optimized circuit:

(¬((v8 ∧v9) ∧ (v9 ∧v7)) ∧ ((v5 ∧v6) ∧ (v7 ∧v8))) ⊕ (v5 ∧v6).

whose multiplicative depth is 3. In our approach, the result-
ing circuit is guaranteed to be semantically equivalent to the
original one in (3).

Scaling via Divide-and-Conquer. We have described
how to obtain a rewrite rule from a small circuit and ap-
plying it into a new yet small circuit. In practice, however,
real circuits are much larger, and the aforementioned method
using the SyGuS formulation is not directly applicable. Even
state-of-the-art SyGuS tools can only handle small circuits
because the search space for synthesis grows exponentially
with the maximum depth and number of input variables.

To address this scalability issue, we apply our approach in
a divide-and-conquer manner; we divide a circuit into pieces,
find a replacement for each piece, and finally compose them
to form a final circuit. For example, consider the circuit cex
of depth 5, which is depicted in Figure 2(a) (the critical path
is highlighted in red):

cex
def
= ((((a ∧ b) ∧ c) ∧ d) ∧ e) ∧ f . (4)

We can divide the circuit into two pieces r1 and r2 through
which a critical path passes. By introducing two auxiliary
variables, cex can be rewritten as r2 where

r2
def
= (r1 ∧ e) ∧ f , r1

def
= ((a ∧ b) ∧ c) ∧ d .

We separately reduce the depths of r1 and r2 in order. We
first find a replacement for r1. We can replace r1 of depth 3
by the following:

r ′
1

def
= (a ∧ b) ∧ (c ∧ d)

which has depth 2 and the same semantics as r1. Next, we
find a replacement for r2. We treat r1 in the definition of r2
as a special variable that has its own depth 2. Considering
the depth of r1, we replace r2 of depth 4 by

r ′
2

def
= r ′

1
∧ (e ∧ f )

that has depth 3 and the same semantics as r2. Combining
r ′
1
and r ′

2
produces the final circuit of depth 3. We use this

divide-and-conquer strategy in both of our offline learning
and online rewriting phases.

4 Algorithm

We first review (Section 4.1) key definitions and results bor-
rowed from [6] that will be used in the rest of the paper. Then
we present the offline learning phase (Section 4.2) and online
optimization phase (Section 4.3) based on term rewriting.

Figure 2. (a) The circuit cex of depth 5. (b) A circuit that has
depth 3 and the same semantics as cex .

4.1 Preliminaries

Term. A signature Σ is a set of function symbols, where
each f ∈ Σ is associated with a non-negative integer n, the
arity of f (denoted arity(f )). For n ≥ 0, we denote the set of
all n-ary elements Σ by Σ

(n). Function symbols of 0-arity are
called constants. Let X be a set of variables. The set TΣ,X of
all Σ-terms overX is inductively defined;X ⊆ TΣ,X and ∀n ≥

0, f ∈ Σ
(n). t1, · · · , tn ∈ TΣ,X . f (t1, · · · , tn) ∈ TΣ,X . We will

denote Var(s) for s ∈ TΣ,X as a set of variables in term s . Note
the set C of circuits consists of terms over Σ = {∧, ⊕, 0, 1}.

Position. The set of positions of term s is a set Pos(s)
of strings over the alphabet of positive integers, which is
inductively defined as follows:

• If s = x ∈ X , Pos(s)
def
= {ϵ}.

• If s = f (s1, · · · , sn), then Pos(s)
def
= {ϵ}∪

⋃n
i=1{ip | p ∈

Pos(si )}.

The position ϵ is called the root position of term s . The size |s |
of term s is the cardinality of Pos(s). For p ∈ Pos(s), the sub-
term of s at positionp, denoted by s |p , is defined by induction

on the length ofp: (i) s |ϵ
def
= s and (ii) f (s1, · · · , sn) |iq

def
= si |q .

For p ∈ Pos(s), we denote by s[p ← t] the term that is ob-
tained from s by replacing the subterm at position p by t .
Formally,

• s[ϵ ← t]
def
= t

• f (s1, · · · , sn)[iq ← t]
def
= f (s1, · · · , si [q ← s], · · · , sn).

Substitution. ATΣ,X -substitution is a functionX → TΣ,X .
The set of allTΣ,X -substitutions is denoted by Sub(TΣ,X ). Any
TΣ,X -substitutionσ can be extended to amapping σ̂ : TΣ,X →

TΣ,X as follows: for x ∈ X , σ̂ (x)
def
= σ (x) and for any non-

variable term s = f (s1, · · · , sn), σ̂ (s)
def
= f (σ̂ (s1), · · · , σ̂ (sn)).

With a slight of abuse of notation, we denote σ̂ as just σ .

Term Rewriting. A Σ-identity (or simply identity) is a
pair ⟨s, t⟩ ∈ TΣ,X ×TΣ,X . Identities will be written as s ≈ t .
A term rewrite rule is an identity ⟨l , r ⟩, written l → r , such
that l < X and Var(r ) ⊆ Var(l). A term rewriting system
⟨Σ,E⟩ consists of a set Σ of function symbols and a set E of
term rewrite rules over TΣ,X . We will often identify such a
system with its rule set E, leaving Σ implicit. The rewrite
relation→E on TΣ,X induced by a term rewriting system E
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is defined as follows:

s →E t ⇐⇒ ∃l → r ∈ E,p ∈ Pos(s),σ ∈ Sub(TΣ,X ).

s |p= σ (l), t = s[p ← σ (r )]

Example 2. Let E
def
= {x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z, 1 ∧ x ≈

x ,x ∧ y ≈ y ∧ x}. Then, 1 ∧ (a ∧ 1) →E (1 ∧ a) ∧ 1 →E

a ∧ 1→E 1 ∧ a →E a.

Equational Theory. Let↔∗E denote the reflexive-transitive-
symmetric closure of→E . The identity s ≈ t is a semantic
consequence of E (denoted E |= s ≈ t ) iff s ↔∗E t . And the

relation ≈E
def
= {⟨s, t⟩ ∈ TΣ,X ×TΣ,X | E |= s ≈ t} is called the

equational theory induced by E.

Example 3. The theory of commutativity for circuits is ≈C
def
=

{⟨s, t⟩ ∈ C×C | C |= s ≈ t} where C = {x∧y ≈ y∧x ,x ⊕y ≈

y ⊕ x}.

Example 4. Boolean ring theory is ≈R
def
= {⟨s, t⟩ ∈ C × C |

R |= s ≈ t} where

R =





x ⊕ y ≈ y ⊕ x , x ∧ y ≈ y ∧ x ,

(x ⊕ y) ⊕ z ≈ x ⊕ (y ⊕ z),

(x ∧ y) ∧ z ≈ x ∧ (y ∧ z),

x ⊕ x ≈ 0, x ∧ x ≈ x ,

0 ⊕ x ≈ x , 0 ∧ x ≈ 0,

x ∧ (y ⊕ z) ≈ (x ∧ y) ⊕ (x ∧ z),

1 ∧ x ≈ x





Boolean ring theory formalizes digital circuits. For any
two circuits c1, c2, c1 ↔

∗
R
c2 means they are semantically

equivalent due to Birkhoff [6].

Example 5. The original circuit c and its optimized version

c ′ in Section 3 are semantically equivalent because

c = v1 ∧ (1 ⊕ (v4 ∧ (¬(v2 ∧v3))))

→R v1 ⊕ (v1 ∧ (v4 ∧ (¬(v2 ∧v3))))

→R v1 ⊕ ((v1 ∧v4) ∧ (¬(v3 ∧v2)))

→R ((v1 ∧v4) ∧ (¬(v3 ∧v2))) ⊕ v1
→R ((¬(v3 ∧v2)) ∧ (v1 ∧v4)) ⊕ v1 = c

′

E-Matching. A substitutionσ is a E-matcher of two terms
s and t if σ (s) ≈E t . Given two terms s and t , a E-matching
algorithm computes {σ ∈ Sub(TΣ,X ) | σ (s) ≈E t}.

Example 6. Given two terms s = x∧y and t = (a∧b)∧(b∧a),

C-matching algorithm returns two substitutions which are

{x 7→ a ∧ b,y 7→ b ∧ a} and {x 7→ b ∧ a,y 7→ a ∧ b}.

4.2 Learning Rewrite Rules

In this section, we describe how to learn rewrite rules using
the divide-and-conquer approach described in Section 3. The
method is inspired by the prior work [26], which uses syntax-
guided synthesis to automatically transform a circuit into an
equivalent and provably secure one.

Algorithm 1 Synthesis-based Rule Learning

Input: c: input boolean circuit

Input: θ : threshold for termination condition

Input: n: predefined size limit for chosen regions

Output: E: a set of rewrite rules

1: c ′ ← c

2: E ← ∅

3: w ← CP(c ′)

4: whilew , ∅ and
|c ′ |
|c |
< θ do

5: remove a pos fromw

6: ⟨r ,σ ⟩ ← GetRegion(c ′ |pos ,n)

7: r ′ ← Synthesize(r , ℓ(r ) − 1,σ )

8: if r ′ , ⊥ then

9: E ← E ∪ {Normalize(r → r ′)}

10: c ′ ← c ′[pos ← σ (r ′)]

11: w ← CP(c ′)

12: end if

13: end while

14: return E

4.2.1 The Overall Algorithm. The pseudocode is shown
in Algo. 1. Here, c denotes an original training circuit, θ
denotes a threshold value for termination condition, n is
an user-provided predefined limit for region selection. The
algorithm generates an optimized circuit c ′, and returns a set
E of rewrite rules collected in the process of optimization.
Our algorithm repeatedly identifies a circuit region and

synthesizes a replacement. To identify a circuit region, we
randomly choose a critical path and traverse the path from
input-to-output. If the left and right children at a position
have different depths, we include both gates in fan-in and
recurse on the child of deeper depth. We repeat this process
until the region size reaches a predefined limit. Once we
successfully synthesize a replacement, we can decrease the
overall depth if a unique critical path passes through the
region. Otherwise, we decrease the number of parallel critical
paths by one.
Our method first initializes c ′ to be the original circuit

c , E to be the empty set and the worklist w to be a set of
critical positions, respectively (lines 1ś3). The loop (lines 4
ś 13) repeats the process of selecting a region and synthe-
sizing a replacement. First, a critical position pos is chosen
in the input-to-output order (line 5). Given a subcircuit at
pos , the GetRegion procedure is invoked to obtain a circuit
region r such that |r | ≤ n (line 6). The GetRegion proce-
dure substitutes some subterms of a given circuit with fresh
variables and returns the result along with the substitution.
Section 4.2.2 will detail more on this procedure. Next, we
invoke a SyGuS solver to synthesize a replacement for r (line
7). If a solution is found (line 8), we obtain a term rewrite rule
r → r ′. We generalize the rule by invoking the Normalize
procedure, and add it into the set E (line 9). The old region
r is replaced with the new region r ′ (line 10). Because the
replacement step may change the overall structure of the

508



Optimizing Homomorphic Evaluation Circuits by Program Synthesis and Term Rewriting PLDI ’20, June 15ś20, 2020, London, UK

Algorithm 2 GetRegion

Input: c: input boolean circuit region

Input: n: predefined size limit for regions

Output: r : a circuit region

Output: σ : a substitution from variables to circuits

1: x ←a new fresh variable

2: if n = 1 or |c | = 1 then

3: return ⟨x , {x 7→ c}⟩

4: end if

5: c1 ← c |1
6: c2 ← c |2
7: if ℓ(c1) > ℓ(c2) then

8: ⟨r ′,σ ⟩ ← GetRegion(c1,n − 1)

9: return ⟨c[1← r ′, 2← x],σ {x 7→ c2}⟩

10: else

11: ⟨r ′,σ ⟩ ← GetRegion(c2,n − 1)

12: return ⟨c[1← x , 2← r ′],σ {x 7→ c1}⟩

13: end if

current circuit, we recompute critical positions and update
the worklist (line 11). This process is repeated as long as
there is room for improvement, and the ratio between the
sizes of c ′ and c does not exceed the threshold value θ (line 4).
The ratio between the circuit sizes is considered because the
depth reduction may not be beneficial if a new circuit c ′ ad-
ditionally performs a huge number of AND/XOR operations.
Although the multiplicative depth is the dominating factor
for homomorphic evaluation performance, the number of op-
erations can also have a non-trivial impact if it is enormous.
The threshold value varies depending on the underlying FHE
schemes. In our evaluation, we set θ to be 3. The algorithm
eventually returns the set E of rewrite rules (line 14), which
include all the transformations occurred while optimizing c
into c ′.

4.2.2 Region Selection. The GetRegion procedure for the
region selection is shown in Algo. 2. The region selection
method is a heuristic based on our observation that replacing
long and narrow regions covering critical paths often leads
to significant optimization effects. If the given region size n
is 1 or the given circuit region is a variable of a constant (i.e.,
|c | = 1) (line 2), we just represent the given circuit region as
a fresh variable and return it along with the corresponding
substitution (line 3). Otherwise (i.e., |c | > 1), we first let c1
and c2 be the left and right child of c , resp. (lines 5 ś 6). If the
depth of c1 (c2, resp.) is deeper than the other (line 7 (line
10, resp.)), we keep extending the region in c1 (c2, resp.) (line
8 (line 11, resp.)), and substitute c2 (c1, resp.) with a fresh
variable (line 9 (line 12, resp.)).

Example 7. Consider the circuit cex in (4). GetRegion(cex , 5)
returns ⟨(r1 ∧ e) ∧ f , {r1 7→ ((a ∧ b) ∧ c) ∧ d}⟩ (see Fig. 2(a)).

4.2.3 Synthesizing Replacement. Given a circuit region
r , an upper bound n of desired multiplicative depths, and

a substitution σ , the function Synthesize returns a new se-
mantically equivalent region r ′ of depth ≤ n.
For 1 ≤ i ≤ n, let x i denote one of variables such that

ℓ(σ (x i )) = i . We can formulate a SyGuS instance as follows.
The syntactic specification for r ′ is

S → dn
dn → dn−1 ∧ dn−1 | dn ⊕ dn | dn−1 | x

n

dn−1 → dn−2 ∧ dn−2 | dn−1 ⊕ dn−1 | dn−2 | x
n−1

...

d0 → 0 | 1 | x0

where S denotes the start symbol and each di represents cir-
cuits of multiplicative depth ≤ i . The semantics specification
for r ′ enforces the equivalence of r and r ′:

∀x0, · · · ,xn−1. r (x0, · · · ,xn−1) ⇐⇒ r ′(x0, · · · ,xn−1).

When Synthesize fails to find a solution, it returns ⊥.

Example 8. After selecting the region r2 as in Example 7, we

find a replacement for r2 using the following formulation, hop-

ing to reduce the depth from 5 to 4. The syntactic specification

for r ′2 is

S → d4
d4 → d3 ∧ d3 | d4 ⊕ d4 | d3
d3 → d2 ∧ d2 | d3 ⊕ d3 | d2 | r1
d2 → d1 ∧ d1 | d2 ⊕ d2 | d1
d1 → d0 ∧ d0 | d1 ⊕ d1 | d0
d0 → 0 | 1 | e | f

and the semantics specification is the semantic equivalence

with r2. Note that r1 is producible from d3 because its depth

is 3. Given this problem, a SyGuS solver (e.g., [3]) finds the

solution r1 ∧ (e ∧ f ) which has depth 4.

4.2.4 Collecting and SimplifyingRewriteRules. When
we obtain a rewrite rule l → r , we simplify it by invoking
the Normalize procedure (line 9 in Algo. 1). We normalize
each rewrite rule l → r ∈ E as follows:

• Let S = {(l |pl , r |pr ) | pl ∈ Pos(l),pr ∈ Pos(r ), l |pl ≈C
r |pr }.
• For each (l |pl , r |pr ) ∈ S, we transform l → r into l ′→
r ′where l ′ = σ (l), r ′ = σ (r ), σ = {l |pl 7→ x , r |pr 7→ x},
and x is a fresh variable. We transform the rule only if
l ′ is semantically equivalent to r ′.

We consider a term rewrite rule that cannot be further sim-
plified by this procedure normalized modulo commutativity.

Example 9. Suppose we want to normalize a rewrite rule:

(a ∧ b) ∧ a
︸       ︷︷       ︸

l

→ (b ∧ a) ∧ b
︸       ︷︷       ︸

r

.

Note that l |1= (a ∧ b) ≈C r |1= (b ∧ a). If we replace the

subterms l |1 and r |1 with a fresh variable x , we would obtain

x ∧ a → x ∧ b, which is undesirably semantics-changing. In

this case, we do not replace the subterms.
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4.3 Rule-based Circuit Optimization

Next, we describe our algorithm that uses the set E of (nor-
malized) learned rewrite rules to optimize unseen circuits.

4.3.1 Our Term Rewriting System. Our term rewriting
system is based on the following relation→E, ℓ induced by
E (learned rewrite rules) and ℓ (the function computing the
multiplicative depth).

s →E, ℓ t ⇐⇒ ∃l → r ∈ E,p ∈ CP(s),σ ∈ Sub(C).

s |p≈C σ (l), ℓ(σ (l)) > ℓ(σ (r )), t = s[p ← σ (r )].

Because our primary goal is to reduce the overall multi-
plicative depth, the above rewrite relation differs from the
ordinary relation in Section 4.1 in three aspects.

First, we rewrite critical paths by considering only critical
positions CP(s) of a given circuit s . Rewriting non-critical
paths are not of our interest.
Second, we admit a rewrite step only if it decreases the

depth of a critical path. This condition is reflected in ℓ(σ (l)) >
ℓ(σ (r )).
Lastly, we perform rewriting modulo commutativity to

provide flexibility to the rewriting procedure. This is for max-
imizing the possibility of applying the learned rewrite rules
for optimization. Instead of syntactically matching a left-
hand side of a rule with a subterm as in the ordinary rewrite
relation, each rewrite step requires C-matching, which is re-
flected in s |p≈C σ (l). Here, a complication arises that there
may be multiple C-matchers. In such a case, we choose the
one that can reduce depth.

Example 10. Recall the rewrite rule (2) in Section 3

v1 ∧ (¬(v4 ∧ x))︸              ︷︷              ︸
l

→ (x ∧ (v1 ∧v4)) ⊕ v1︸                   ︷︷                   ︸
r

.

and the target circuit (3) of depth 4

(v5 ∧v6) ∧ (¬((v7 ∧v8) ∧ (¬((v8 ∧v9) ∧ (v9 ∧v7))))).

There are two substitutions that make l match with the target

circuit: σ1 = {v1 7→ v5 ∧v6,v4 7→ v7 ∧v8,x 7→ (¬(v8 ∧v9) ∧

(v9∧v7))} and σ2 = {v1 7→ v5∧v6,v4 7→ (¬(v8∧v9)∧ (v9∧

v7)),x 7→ v7 ∧v8}. Applying the substitutions into r gives us

two candidates for the replacement, which are

σ1(r ) = (¬((v8∧v9)∧(v9∧v7))∧((v5∧v6)∧(v7∧v8)))⊕(v5∧v6),

σ2(r ) = ((v7∧v8)∧((v5∧v6)∧(¬(v8∧v9)∧(v9∧v7))))⊕(v5∧v6).

Note that σ1(r ) has depth 3 whereas σ2(r ) has depth 4. Because

only σ1 can reduce the depth, we choose σ1.

The following theorems ensure that our term rewriting
system is semantics-preserving and terminating.

Theorem 1 (Soundness). ∀c, c ′ ∈ C. c →E, ℓ c
′⇒ c ≈R c ′.

Proof. Available in supplementary material. □

Theorem 2 (Termination). →E, ℓ is a terminating relation.

Proof. Available in supplementary material. □

Intuitively, termination is enforced because every rewrite
step decreases the depth of a critical path. If the rewritten
critical path is unique, we reduce the overall multiplicative
depth of the circuit. Otherwise, we reduce the number of
parallel critical paths. Because every circuit has at least one
critical path of non-negative depth, the rewriting procedure
eventually terminates.

Using the rewrite relation→E, ℓ , given a circuit c , we per-
form term rewriting on c to obtain an optimized circuit c ′

such that c
∗
→E, ℓ c ′. At each rewrite step, we randomly

choose a critical path and traverse the path to find a target
region to be replaced. The traversal order is randomly cho-
sen between the input-to-output and output-to-input orders.
Similarly to Algo. 1, we stop the rewriting procedure when
there are so many additional AND/XOR gates in c ′ that the
depth reduction may not be beneficial.

4.3.2 Optimizations. In practice, we apply the following
optimization techniques into the rewriting procedure.

Prioritizing LargeRewrite Rules. In the casewheremul-
tiple rewrite rules are applicable, we choose the largest rule.
The size of a rule l → r is simply measured by |l |. This heuris-
tic is based on our observation that large rules are applicable
less often than small rules, but they expedite transformation
by modifying a wider area.

Bounded C-matching. From a performance perspective,
the main weakness of our rewriting system is that each
rewrite step requires C-matching, which is known to be
NP-complete [36]. We limit the search space of C-matching
algorithm by limiting the number of applications of commu-
tativity rules (see supplementary material for details).

Term Graph Rewriting. So far, we have presented our
method as if circuits are represented as functional expres-
sions for ease of presentation. In practice, we cannot directly
implement this kind of conventional term rewriting based on
strings or trees because of an efficiency issue. For example,
term rewrite rules such as (2) containing some variable more
often on its right-hand side than on its left-hand side can
increase the size of a term by a non-constant amount. This
problem can be overcome by creating several pointers to a
subterm instead of copying it.
For efficiency, we conduct term graph rewriting [41] on

circuits. Term graph rewriting is a model for computing with
graphs representing functional expressions. Graphs allow
sharing common subterms, which improves the efficiency
of conventional term rewriting in space and time. Thus, we
represent circuits as graphs and perform rewriting on the
graphs by translating term rewrite rules into suitable graph
transformation rules. Term graph rewriting is sound with
respect to term rewriting in that every graph transforma-
tion step corresponds to a sequence of applications of term
rewrite rules. The interested reader is referred to [41] for
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more details about the soundness proof and the translation
method.

5 Evaluation

We implemented our method as a tool named Lobster
3.

This section evaluates our Lobster system to answer the
questions:

Q1: How effective is Lobster for optimizing FHE applica-
tions from various domains?

Q2: How does Lobster compare with existing general-
purpose FHE optimization techniques?

Q3: What is the benefit of the rule normalization and equa-
tional matching for rule applications of Lobster?

Q4: What is the benefit of using learned rewrite rules?
Q5: How sensitive is Lobster to changes in a given train-

ing set?

All of our experiments were conducted on Linux machines
with Intel Xeon 2.6GHz CPUs and 256G of memory.

5.1 Experimental Setup

Implementation. Lobster comprises three pieces: (i) an
offline rule learner, (ii) an online circuit optimizer, and (iii) a
homomorphic circuit evaluator. Lobster is written in OCaml
and consists of about 3K lines of code.
The offline rule learner uses EUSolver [3], which is an

open-source search-based synthesizer. We chose EUSolver
among the general-purpose synthesizers that participated
in the 2019 SyGuS competition [46] since the tool performs
best for our optimization tasks. We use a timeout of one hour
for synthesizing each rewrite rule.
The online circuit optimizer transforms Boolean circuits

generated by Cingulata [15], an open-source FHE compiler,
into depth-optimized ones. Cingulata first directly trans-
lates a given FHE application written in C++ into a Boolean
circuit representation, and then heuristically minimizes the
circuit area by removing redundancy using the ABC tool [12],
which has been widely used for hardware synthesis. Then,
our optimizer performs the rewriting procedure on the re-
sulting circuit.
Circuits optimized by the online optimizer are evaluated

by our homomorphic circuit evaluator built usingHElib [32].4

When homomorphically evaluating circuits, we set the se-
curity parameter to 128 which is usually considered large
enough. It means a ciphertext can be broken in the worst
case time proportional to 2

128.

Benchmarks. First, our benchmarks comprise 25 FHE
applications written using the Cingulata APIs shown in
Table 1. We first collected 64 benchmarks from the following

3Learning to Optimize Boolean circuits using Synthesis & TErm Rewriting
4We could not use the homomorphic circuit evaluator provided by

Cingulata because it crashed for some of our evaluation benchmarks,

which are fairly sizeable circuits.

three sources and ruled out 21 which are already depth-
optimal and 18 which are out of reach for homomorphic
evaluation because of the enormous circuit sizes.

• Cingulata benchmarks ś 9 FHE-friendly algorithms
from diverse domains (medical diagnosis, stream ci-
pher, search, sort) available in [21].
• Sorting benchmarks ś four privacy-preserving sorting
algorithms (merge, insertion, bubble, and odd-even)
presented in [17].
• Hackers Delight benchmarks ś 26 homomorphic bit-
wise operations adapted from [52]5, a collection of
bit-twiddling hacks. We include these benchmarks be-
cause they can be potentially used as building blocks
for efficient FHE applications that perform computa-
tions over fixed-width integers.
• EPFL benchmarks ś 25 circuits from EPFL combina-
tional benchmark suite [1]. The circuits are intendedly
suboptimal to test the ability of circuit optimization
tools.

We concluded the 21 benchmarks are depth-optimal based
on empirical evidence. We could not mine any rules from
their circuit representations even after 7 days of running
the offline learner. This means that even the state-of-the-art
synthesizer with practically unlimited time cannot find any
improvement. 7 out of 9 Cingulata benchmarks fall into
this category since they are already carefully hand-tuned
to be depth-optimal. 14 out of 26 Hackers Delight bench-
marks have no room for improvement because their circuit
representations are fairly simple. We excluded 18 circuits
from EPFL benchmarks because they are out of reach for
homomorphic evaluation even with the state-of-the-art FHE
scheme [32]. Our homomorphic circuit evaluator runs out
of memory for the circuits where the number of AND/XORs
is greater than 10,000, or the multiplicative depth is larger
than 100. All the FHE sorting algorithms can take up to 6
encrypted 8-bit integers as input.

Baseline. We compare Lobster to the work by Carpov
et al. [14], which also aims at minimizing the multiplicative
depth of circuits for homomorphic evaluation. The work is
also based on term rewriting, but only with two hand-written
rewrite rules. The first rule is based on AND associativity:
(x ∧y)∧z → x ∧(y∧z). In a given circuit c , a substitution σ
such that σ ((x ∧ y) ∧ z) is syntactically matched with a sub-
circuit of c is found. Thematched partσ ((x∧y)∧z) is replaced
with σ (x∧(y∧z)) if ℓ(y) < ℓ(x) and ℓ(z) < ℓ(x). This rewrite
rule, when applied into a critical path, reduces the depth by
one from ℓ(σ (x)) + 2 to ℓ(σ (x)) + 1. The second rewrite rule
is based on XOR distributivity: (x ⊕y)∧z → (x ∧z) ⊕ (y∧z).
This rule does not affect the depth, but it can make the first
rule applicable by clearing XOR operators away. The two
rewrite rules repeatedly rewrite critical paths until a heuristic

522 benchmarks used for program synthesis [35] + 4 excerpted from [52]
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Table 1. Benchmark characteristics. ×Depth denotes the multiplicative depth. #AND and Size give the number of AND
operations and the circuit size, respectively.

Name Description ×Depth #AND Size

cardio medical diagnostic algorithm [16] 10 109 318
dsort FHE-friendly direct sort [17] 9 708 1464
msort merge sort [17] 45 810 1525
isort insertion sort [17] 45 810 1525
bsort bubble sort [17] 45 810 1525
osort oddeven sort [17] 25 702 1343
hd-01 isolate the rightmost 1-bit [35] 6 87 118
hd-02 absolute value [35] 6 76 229
hd-03 floor of average of two integers (a clever impl.) [35] 5 27 64
hd-04 floor of average of two integers (a naive impl.) [52] 10 75 159
hd-05 max of two integers [35] 7 121 295
hd-06 min of two integers [35] 7 121 295
hd-07 turn off the rightmost contiguous string of 1-bits [35] 5 17 32
hd-08 determine if an integer is a power of 2 [35] 6 18 37
hd-09 round up to the next highest power of 2 [35] 14 134 236
hd-10 find first 0-byte [52] 6 35 73
hd-11 the longest length of contiguous string of 1-bits [52] 18 391 652
hd-12 number of leading 0-bits [52] 16 116 232
bar barrel shifter [1] 12 3141 5710
cavlc coding-cavlc [1] 16 655 1219
ctrl ALU control unit [1] 8 107 180
dec decoder [1] 3 304 312
i2c i2c controller [1] 15 1157 1987
int2float int to float converter [1] 15 213 386
router lookahead XY router [1] 19 170 277

termination condition is satisfied. As the tool is not publicly
available, we reimplemented their algorithm.6

5.2 Effectiveness of Lobster

Optimization Effect. Weevaluate Lobster on the bench-
marks and compare it with Carpov et al. [14]. Both of the
tools are provided circuits initially generated by Cingulata.
We aim to determine whether Lobster can learn rewrite
rules from training circuits and effectively generalize them
for optimizing other unseen circuits. To this end, we conduct
leave-one-out cross validation; for each benchmark, we
use rewrite rules learned from the other remaining bench-
marks. Both of the tools are given the timeout limit of 12
hours for the optimization tasks; in case of exceeding the
limit, we use the best intermediate results computed so far.
We measure reduction ratios of the multiplicative depth and
speedups in overall homomorphic evaluation time (vs. initial
Cingulata-generated circuits).

The results are summarized in Fig. 3. More detailed infor-
mation can be found in Table 2. Lobster is able to optimize

6We use the łrandomž priority function because it slightly outperforms the

łnon-randomž heuristics according to the results in [14].

19 out of 25 benchmarks within the timeout limit. Lobster
achieves 1.18x ś 3.71x speedups with the geometric mean
of 2.05x. The number of AND gates increases up to 2x more
with the geometric mean of 1.17x. The depth reduction ra-
tios range from 6.3% to 47.4% with the geometric mean of
21.9%. Note that the depth reduction ratios are generally
proportional to performance improvements (but not exactly
proportional since the number of AND operations also influ-
ences the performance).

We next study the results in detail. Most notably, Lobster
achieves 2.45x and 1.34x speedups for the two Cingulata

benchmarks cardio and dsort, respectively. Recall that they
are already carefully hand-tuned to be depth optimized. This
result shows that our method provides significant perfor-
mance gains that are complementary to those achieved by
domain-specific optimizations. The four sorting benchmarks
also observe significant performance improvements. Lobster
reduces the depth by 20% for each of them. The osort bench-
mark shows a 2.4x speedup, and the other three benchmarks
show 1.5x speedups. As of the Hacker’s Delight benchmarks,
7 out of 12 observe improvements. For hd-09, hd-11 and
hd-12, we observe 1.32x ś 1.64x speedups. In particular, the
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Figure 3. Main results comparing the optimization performance of Lobster and Carpov et al [14] ś Speedups in overall
homomorphic evaluation time (left) (vs. initial Cingulata-generated circuits) and depth reduction ratios (right).

Table 2. Detailed main results. Opt. Time gives online optimization time. The timeout for optimization is set to 12 hours.
#AND ↑ shows the ratio between the number of AND gates of the optimized circuit and the original one. Eval. Time shows
homomorphic evaluation time (where ‘-’ means that the evaluation time is the same as the original).

Original Carpov et al [14] Lobster

Name ×Depth Eval. Time ×Depth Opt. Time #AND ↑ Eval. Time ×Depth Opt. Time #AND ↑ Eval. Time

cardio 10 17m 14s 9 10s x1.07 10m 08s 8 24s x1.06 7m 02s

dsort 9 10m 52s 8 1m 25s x1.08 8m 29s 8 2m 31s x1.12 8m 08s

msort 45 5h 20m 59s 41 19m 39s x1.02 5h 00m 06s 36 8h 02m 06s x1.79 3h 33m 19s

isort 45 5h 20m 16s 45 5m 06s - - 36 8h 29m 58s x1.83 3h 38m 13s

bsort 45 5h 21m 46s 41 19m 04s x1.02 5h 06m 09s 36 7h 59m 44s x1.83 3h 39m 57s

osort 25 2h 16m 58s 25 1m 55s - - 20 3h 22m 20s x2.00 57m 06s

hd-01 6 4m 36s 6 1s - - 6 13s - -

hd-02 6 4m 50s 6 1s - - 6 21s - -

hd-03 5 1m 08s 5 1s - - 5 4s - -

hd-04 10 9m 06s 9 1s x1.00 7m 36s 8 10s x1.04 3m 20s

hd-05 7 6m 08s 7 5s - - 7 3m 28s - -

hd-06 7 6m 14s 7 4s - - 7 2m 30s - -

hd-07 5 1m 02s 5 1s - - 3 3s x0.76 24s

hd-08 6 2m 18s 5 1s x1.00 1m 03s 5 2s x1.00 1m 00s

hd-09 14 13m 03s 12 2s x1.10 9m 34s 10 1m 04s x1.32 7m 56s

hd-10 6 4m 24s 5 1s x1.03 2m 07s 5 3s x1.03 1m 25s

hd-11 18 33m 31s 17 2s x1.00 28m 30s 15 1m 18s x1.00 21m 40s

hd-12 16 22m 31s 15 1m 35s x1.00 18m 1s 15 26s x1.00 17m 04s

bar 12 56m 55s 12 59s - - 11 4h 49m 30s x0.96 48m 19s

cavlc 16 26m 35s 10 1m 48s x1.20 15m 1s 10 8m 48s x1.02 13m 06s

ctrl 8 3m 06s 6 3s x1.02 2m 44s 5 22s x1.12 1m 18s

dec 3 38s 3 1s - - 3 5s - -

i2c 15 51m 00s 9 2m 47s x1.08 21m 38s 8 16m 52s x1.05 15m 59s

int2float 15 15m 23s 9 10s x1.13 6m 30s 8 1m 05s x1.10 4m 09s

router 19 37m 26s 10 14s x1.31 12m 34s 10 1m 49s x1.12 12m 31s

speedups for hd-04, hd-07, hd-08 and hd-10 are remarkable
(2.7x, 2.6x, 2.3x and 3.1x, respectively). However, both of
the two optimizers fail to optimize the other 5 benchmarks,

which are relatively simple. Based on the fact that these

513



PLDI ’20, June 15ś20, 2020, London, UK DongKwon Lee, Woosuk Lee, Hakjoo Oh, and Kwangkeun Yi

small and tricky algorithms are designed to efficiently per-
form computations on plaintexts, we suspect these bench-
marks to be depth-optimal. As of the EPFL benchmarks, 6
out of 7 observe improvements. Both optimizers fail to opti-
mize dec, which we suspect to be already depth-optimal. For
bar, we observe 1.18x speedup. For the other benchmarks
(cavlc, ctrl, i2c, int2float and router), Lobster achieves re-
markable speedups (2.0x ś 3.7x). The number of AND gates
increases 1.17x more on average. For the 4 sorting bench-
marks ({m,i,b,o}sort), we observe nearly 2x increases. For
hd09, we observe 1.32x increase. For the other benchmarks,
we observe negligible increases. The increases in the number
of XOR gates is similar, with the geometric mean of 1.2x.
In terms of time spent for the optimization, Lobster suc-
cessfully optimizes circuits within several minutes in most
cases, with the exception of sizeable circuits such as the four
sorting benchmarks and bar benchmark that require up to 8
hours.

Learning Capability. We investigate the learned rewrite
rules. From all the benchmarks, our rule learner mines 186
rewrite rules. The rule sizes (the size of a rule l → r is mea-
sured by |l |) range from 4 to 38. The average and median
sizes are 12 and 11, respectively. The machine-found opti-
mization patterns are surprisingly aggressive. For example,
the following intricate rules enable to reduce the depth of a
rewritten critical path by 1 when applied once (we denote
1 ⊕ c as ¬c).

(v1 ∧ (v2 ∧ ((v3 ⊕ (v4 ∧v5)) ⊕ (v6 ∧v5)))) →

((((v6 ⊕ v4) ∧v5) ⊕ v3) ∧ (v2 ∧v1))

((¬((v1 ∧ (¬(v2 ⊕ v3))) ⊕ (v2 ⊕ v3))) ∧v4) →

(((¬v2) ⊕ v3) ∧ ((¬v1) ∧v4))

(¬((¬((((v1 ⊕ v2) ∧v3) ∧v4) ∧v5)) ⊕ v2)) →

((((v2 ⊕ v1) ∧v4) ∧ (v3 ∧v5)) ⊕ v2)

((¬((v1 ⊕ (v2 ∧v3)) ⊕ (v4 ∧v3))) ∧v5) →

(((v2 ⊕ v4) ∧ (v5 ∧v3)) ⊕ ((¬v1) ∧v5))

Next, we investigate how long it takes to learn rewrite
rules. The offline learning algorithm (Algo. 1) is time con-
suming. The timeout limit for the offline learning is set to 168
hours (i.e., 1 week), and we use intermediate results (rules
collected so far) when the budget expires. On average, the
offline learning phase for each benchmark takes 125 hours.
For dsort, hd01, hd02, hd03, hd10, ctrl and dec, the learning
takes 1 ś 46 hours. For router, it takes 129 hours. The other
benchmarks takes 168 hours (i.e., the learner is forced to stop
when the time budget expires).

5.3 Comparison to the Baseline

Lobster significantly outperforms the existing state-of-the-
art [14] in terms of both optimization time and homomorphic
evaluation time. Only 15 out of 25 benchmarks can be opti-
mized by [14], whereas Lobster is able to optimize 19. The

maximum speedup of [14] is 3.0x with the geometric mean
of 1.58x. The maximum depth reduction ratio is 47.4% with
the geometric mean of 15.7%.

We empirically observe that [14] often falls into the basin
of local minima because its two rewrite rules can modify
only a small area at a time. On the contrary, Lobster often
applies large rewrite rules and escapes local optima.

5.4 Efficacy of Reusing Learned Rewrite Rules
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Figure 4. Efficacy of reusing learned rewrite rules

To investigate the benefit of reusing learned rewrite rules,
we compare Lobster to a simpler method that uses the of-
fline rule learner as an on-the-fly optimization synthesizer.
The timeout limit for optimization is again set to 12 hours,
and we use the best intermediate results when the budget
expires.
Fig. 4 summarizes the results. The synthesis-based opti-

mizer can optimize only 12 benchmarks within the timeout
limit. Furthermore, in all the 12 benchmarks, the depth re-
duction ratio is less than that of Lobster that reuses learned
rewrite rules. That is due to its limited scalability; if the
synthesis-based optimizer is given 7 days, it can achieve
optimization effects similar to Lobster’s. Such enormous
optimization costs are mainly due to the inability to prove
unrealizability (i.e., no solution) of attempts of optimizing
already depth-optimal circuit regions. In such cases, the syn-
thesizer wastes the timeout limit of 1 hour. On the contrary,
Lobster can avoid such situations by giving up cases beyond
the reach of previously learned rules.

5.5 Efficacy of Equational Rewriting

We now evaluate the effectiveness of design choices made
in Lobsterś the rule normalization and equational term
rewriting. We compare Lobster with its variant without the
two techniques. In other words, the variant uses syntactic
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Figure 5. Efficacy of equational rewriting

matching instead of equational matching when conducting
term rewriting and applies the learned rules without the
normalization process. Fig. 5 summarizes the results. The
variant can optimize only 9 benchmarks (Lobster can opti-
mize 19). We conclude that overall, the rule normalization
and equational term rewriting play crucial roles in giving
flexibility to the rewriting procedure.

5.6 Sensitivity to Changes in a Training Set
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Figure 6. Sensitivity to changes in a training set; comparison
of the result of two-fold cross validation with that of leave-
one-out cross validation

We now investigate the effects of changing the number
of training programs. We have conducted 2-fold cross val-
idation; for each of four benchmark categories (Cingulata,

Sorting, HD, EPFL), we used rules learned from the smaller
half and applied them to the other larger half, and compare
with the result of leave-one-out cross validation. The 14
benchmarks on the x-axis in Fig. 6 are testing benchmarks,
and the other 11 benchmarks are training benchmarks. As
can be seen in Fig. 6 that summarizes the results, the smaller
set of training programs does not lead to significant per-
formance degradation. The cardio, cavlc, i2c, int2float and
router benchmarks observe optimization effects less power-
ful than before, but the other benchmarks remain the same.
We conclude that overall, the performance of Lobster is not
sensitive to changes in a given set of training programs.

6 Related Work

FHE Compilers. FHE compilers [4, 15, 22, 23] allow pro-
grammers to easily write FHE applications without detailed
knowledge of the underlying FHE schemes. These compilers
also provide optimizations for reducing the multiplicative
depth of the compiled circuits. However, the optimization
rules used bymodern FHE compilers are hand-written, which
requires manual effort and is likely to be sub-optimal. In this
paper, we aimed to automatically generate optimization rules
that can be used by existing compilers.

Cingulata [15] is an open-source compiler that translates
high-level programs written in C++ into boolean circuits.
Cingulata also supports optimization of circuits for reduc-
ing multiplicative depth. It uses ABC [12], an open-source
boolean circuit optimizer. Cingulata also usesmore advanced,
yet hand-written, circuit optimization techniques specially
designed for minimizing multiplicative depth [5, 14]. In par-
ticular, the multi-start heuristic by Carpov et al. [14], which
we used for comparison with Lobster in Section 5, shows a
significant reduction in multiplicative depths for their bench-
marks. However, we note that the benchmark circuits used
in [14] are łintendedly suboptimal to test the ability of opti-
mization toolsž [1]. By contrast, the benchmarks used in this
paper include circuits that are already carefully optimized in
terms of FHE evaluation as explained in Section 5.1, thereby
leaving relatively small room for depth reduction. We ob-
serve the heuristic in [14] does not perform verywell for such
a harder optimization task. We recently implemented Aubry
et al. [5] and observed that Aubry et al. [5] is slightly better
than Carpov et al. [14] (16.9% vs. 15.7% in terms of geometric
mean of depth reduction ratio) for our benchmarks.
Ramparts [4] is a compiler for translating programs writ-

ten in Julia into circuits for homomorphic evaluation. It opti-
mizes the size and multiplicative depth of the circuits using
symbolic execution. It also automatically selects the parame-
ters of FHE schemes and the plain text encoding for input
values. Ramparts uses a number of hand-written circuit
optimization rules for reducing multiplicative depth.
Alchemy [22] is a system that provides domain-specific

languages and a compiler for translating high-level plaintext
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programs into low-level ones for homomorphic evaluation.
The compiler automatically controls the ciphertext size and
noise by choosing FHE parameters, generating keys and
hints, and scheduling maintenance operations. The domain-
specific languages are statically typed and are able to check
the safety conditions that parameters should satisfy.

CHET [23] is a domain-specific compiler for FHE applica-
tions on neural network inference. It enables a number of
optimizations automatically but they are specific to tensor
circuits, e.g., determining efficient tensor layout, selecting
good encryption parameters, etc. By contrast, our technique
is domain-unaware and does not rely on a limited set of
hand-written rules.

Superoptimization. Similar to ours, existing superopti-
mizers [7, 13, 33, 42, 43] for traditional programs are able to
learn rewrite rules automatically. The major technical differ-
ence, however, is that we use equational matching, rather
than syntactic matching, to maximize generalization.

Bansal and Aiken [7] present a technique for automatically
constructing peephole optimizers. Given a set of training
programs, the technique learns a set of replacement rules
(i.e. peephole optimizers) using exhaustive enumeration. The
correctness of the learned rules is ensured by a SAT solver.
The learned rules are stored in an optimization database
and used for other unseen programs via syntactic pattern
matching. Optgen [13] is also based on enumeration for
generating peephole optimization rules that are sound and
complete up to a certain size by generating all rules up to
the size and checking the equivalence by an SMT solver.
Souper [42] is similar to [7] but is based on a constraint-
based synthesis technique and targets a subset of LLVM IR.
STOKE [33, 43] uses a stochastic search based on MCMC to
explore the space of all possible program transformations
for the x86-64 instruction set.

Program Synthesis. Over the last few years, inductive
program synthesis has been widely used in various appli-
cation domains (e.g. [26ś29, 45, 51, 53]). In this work, we
use inductive synthesis to minimize multiplicative depth
of boolean circuits. To our knowledge, this is the first ap-
plication of program synthesis for efficient homomorphic
evaluation. Our work has been inspired by the prior work
by Eldib et al. [26], where syntax-guided synthesis and static
analysis are used to automatically transform a circuit into
an equivalent and provably secure one that is resistant to a
side-channel attack.

Term Rewriting. Term rewriting has been widely used
in program transformation systems (e.g. [9, 11, 47, 48, 50]).
The previous rewrite techniques rely on hand-written rules
that require domain expertise, whereas this work uses auto-
matically synthesized rewrite rules. For example, Chiba et al.
[20] presented a framework of applying code-transforming

templates based on term rewriting, where programs are rep-
resented by term rewriting systems and transformed by a
set of given rewrite rules (called templates). Visser et al. [50]
used term rewriting in ML compilers and presented a lan-
guage for writing rewriting strategies. In this work, we focus
on a different application domain of term rewriting (i.e. ho-
momorphic evaluation) and provide a novel idea of learning
and using rewrite rules automatically.

7 Conclusion

In this paper, we presented a newmethod for optimizing FHE
boolean circuits that does not require any domain expertise
and manual effort. Our method first uses program synthesis
to automatically discover a set of optimization rules from
training circuits. Then, it performs term rewriting on the
new, unseen circuit based on the equational matching to
maximally leveraging the learned rules. We demonstrated
the effectiveness of our method with 18 FHE applications
from diverse domains. The results show that our method
achieves sizeable optimizations that are complementary to
existing domain-specific optimization techniques.
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