Check for
Updates

Simplifying Mixed Boolean-Arithmetic Obfuscation
by Program Synthesis and Term Rewriting

Jaehyung Lee
Department of Computer Science & Engineering
Hanyang University
Ansan, Korea
huna3869@hanyang.ac.kr

ABSTRACT

Mixed Boolean Arithmetic (MBA) obfuscation transforms a pro-
gram expression into an equivalent but complex expression that
is hard to understand. MBA obfuscation has been popular to pro-
tect programs from reverse engineering thanks to its simplicity
and effectiveness. However, it is also used for evading malware
detection, necessitating the development of effective MBA deob-
fuscation techniques. Existing deobfuscation methods suffer from
either of the four limitations: (1) lack of general applicability, (2)
lack of flexibility, (3) lack of scalability, and (4) lack of correctness.
In this paper, we propose a versatile MBA deobfuscation method
that synergistically combines program synthesis, term rewriting,
and an algebraic simplification method. The key novelty of our
approach is that we perform on-the-fly learning of transformation
rules for deobfuscation, and apply them to rewrite the input MBA
expression. We implement our method in a tool called PRoOMBA
and evaluate it on over 4000 MBA expressions obfuscated by the
state-of-the-art obfuscation tools. Experimental results show that
our method outperforms the state-of-the-art MBA deobfuscation
tool by a large margin, successfully simplifying a vast majority of
the obfuscated expressions into their original forms.

CCS CONCEPTS

« Security and privacy — Software security engineering; Theory
of computation — Equational logic and rewriting.

KEYWORDS

Program Synthesis; Mixed Boolean Arithmetic Obfuscation; Term
Rewriting

ACM Reference Format:

Jaehyung Lee and Woosuk Lee. 2023. Simplifying Mixed Boolean-Arithmetic
Obfuscation by Program Synthesis and Term Rewriting. In Proceedings of
Proceedings of the 2023 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS ’23). ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3576915.3623186

“Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11...$15.00
https://doi.org/10.1145/3576915.3623186

2351

Woosuk Lee*
Department of Computer Science & Engineering
Hanyang University
Ansan, Korea
woosuk@hanyang.ac.kr

1 INTRODUCTION

Code obfuscation aims to safeguard program assets from reverse
engineering through the application of semantics-preserving trans-
formations to the source code. A desirable obfuscation technique,
from the obfuscator’s perspective, should preserve the program’s
semantics at a reasonable obfuscation cost and runtime overhead,
while also making the program resistant to both manual and auto-
mated reverse engineering.

Mixed Boolean Arithmetic (MBA) obfuscation [43] has gained
significant attention in recent years as an effective obfuscation
technique. MBA obfuscation transforms simple expressions into
complex expressions using a mixture of bitwise and arithmetic op-
erations. For instance, an expression like x — y can be transformed
into x ® y + 2(x V —y) + 2 where @ denotes bitwise exclusive-
or, V denotes bitwise or, and = denotes bitwise not. Thanks to a
solid theoretical foundation [43], MBA obfuscation enjoys arbi-
trarily many semantics-preserving transformations. In addition, it
incurs a reasonable obfuscation cost and runtime overhead since
only simple bitwise and arithmetic operations are added. More-
over, due to the high complexity of MBA expressions, it is resistant
to both manual and automated reverse engineering. It is shown
that off-the-shelf compiler optimizations [21] and symbolic reason-
ing tools [11, 17, 20, 30, 36, 40] cannot simplify MBA expressions
because the bloated mixture of bitwise and arithmetic operations
invalidates these techniques [33]. Thanks to these advantages, MBA
obfuscation has been widely used in both commercial and academic
obfuscators [1, 12, 15, 28, 32].

However, MBA obfuscation is not always used for good purposes.
Malware authors use MBA obfuscation to protect their malware
from reverse engineering. For example, MBA obfuscation has been
used in malware compilation chains [9].

To protect against malware equipped with MBA obfuscation, var-
ious techniques for MBA deobfuscation have been proposed. These
techniques include term rewriting [18], SAT solving [22], stochastic
program synthesis [10, 16, 31], neural network inference [19], and
algebraic methods [29, 34, 41].

Unfortunately, these techniques suffer from either of the follow-
ing limitations.

e Limited to a specific class of MBA expressions: Some
techniques [18, 22, 29, 34, 41] are limited to specific forms of
MBA expressions, thereby failing to handle state-of-the-art
MBA obfuscation techniques [15, 39]. They are limited to
linear or polynomial MBA expressions with only the logical
operators A, V, =, @ and the arithmetic operators +, —, X. A
polynomial MBA expression is a linear combination of a
product of bitwise expressions of variables, and a linear MBA

https://doi.org/10.1145/3576915.3623186
https://doi.org/10.1145/3576915.3623186
https://doi.org/10.1145/3576915.3623186
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576915.3623186&domain=pdf&date_stamp=2023-11-21

CCS *23, November 26-30, 2023, Copenhagen, Denmark

Rewrite Rule

Program)
Synthesizer Rule Rewriter
—xm+
—

Complex MBA

N @/

Simplified MBA

Linear MBA
Simplifier

Figure 1: Overview of the PROMBA system.

expression is a polynomial MBA expression where each term
is a bitwise expression of variables.

Lack of flexibility: Because there are vastly many ways to
obfuscate a program using MBA obfuscation, a deobfuscation
technique should be flexible enough to handle a wide range
of MBA transformations. However, some techniques [18,
19] are limited to specific transformations which are well-
defined in the literature or observed in a set of samples.
Lack of scalability: Because MBA obfuscation can greatly
increase the size of an expression, a deobfuscation technique
should be scalable enough to handle large MBA expressions.
However, some techniques [18, 19, 22] are limited to small
MBA expressions.

No guarantee of correctness: It is desirable for a deobfusca-
tion technique to guarantee the correctness of deobfuscation,
especially when it is used in conjunction with program anal-
ysis techniques to detect malicious behaviors of malware.
However, some techniques [10, 16, 19, 31] are not sound.

In this paper, we present an MBA deobfuscation system named
PROMBA that overcomes the aforementioned limitations of existing
techniques. Our method synergistically combines three powerful
techniques: program synthesis [23], term rewriting [5], and an alge-
braic simplification method [34]. Figure 1 illustrates our approach.

(1) Given an MBA expression, we first simplify all linear MBA
sub-expressions using an existing deobfuscator for linear
MBA expressions. The existing deobfuscators based on alge-
braic methods [29, 34, 41] can efficiently simplify large linear
MBA expressions. Therefore, any of such deobfuscators can
be used in our approach. After this step, all linear MBA sub-
expressions are simplified, but the resulting MBA expression
may still contain non-linear MBA sub-expressions that can
be simplified further.

Given the simplified MBA expression, we aim to find an
equivalent MBA expression that is smaller in size. This prob-
lem can be solved by program synthesis in theory. How-
ever, the synthesis problem is usually intractable because
the search space is too large due to the significant size of the
MBA expression. Therefore, we adopt a divide-and-conquer
approach. We choose a sub-expression of the MBA expres-
sion and synthesize its equivalent counterpart of smaller size.

@

2352

Jaehyung Lee and Woosuk Lee

By doing so, we reduce the search space and the complexity
of the synthesis problem.

(3) From the chosen sub-expression and the synthesized one, we
learn an MBA equivalence between them. This equivalence
can be viewed as a transformation rule. We generalize the
learned equivalence and add it to the set of rules to reduce
their number and increase their flexibility.

(4) We apply the transformation rules to rewrite the MBA ex-
pression. The soundness and termination of the rewriting
process are guaranteed by the theory of term rewriting [5].
After this step, the MBA expression may contain linear terms
that can be further simplified by the linear MBA deobfusca-
tor. We go back to Step 1 and repeat the process until the
MBA expression cannot be simplified further.

The key novelty of our approach is that we perform on-the-
fly learning of rules for simplification, and apply them to rewrite
the MBA expression. This on-the-fly learning of transformation
rules allows us to handle arbitrary (possibly non-linear and non-
polynomial) MBA expressions obfuscated with diverse rules for
obfuscation. This is in contrast to existing term rewriting-based
deobfuscators that use a fixed set of rules [18], which limits their
applicability to a specific type of obfuscation.

We have implemented our proposed method in a tool called
PROMBA and evaluated it on 4011 MBA expressions obtained from
various sources. Specifically, we used MBA expressions generated
by state-of-the-art obfuscators Lok1 [39] and TIGRESs [2], as well as
MBA expressions from the evaluation dataset of the state-of-the-art
deobfuscators MBASOLVER [41] and SYNTIA [10]. Our method can
successfully simplify 84% of the MBA expressions to their original
expressions or even expressions that are smaller than the original
ones. On the other hand, MBASOLVER and SYNTIA can simplify only
13% and 39% of the MBA expressions to their original expressions
or smaller ones, respectively. In particular, MBASOLVER generates
36 times larger expressions on average than those generated by
PROMBA, and SYNTIA does not guarantee the correctness of deob-
fuscation, occasionally generating incorrect expressions.

We summarize our contributions as follows:

e We propose a novel and versatile method for deobfuscating
arbitrary (possibly non-linear and non-polynomial) MBA
expressions using a combination of program synthesis and
term rewriting. This enables the on-the-fly learning of ar-
bitrary MBA equivalences that can be used to deobfuscate
arbitrary MBA expressions effectively.

Our method is implemented in a tool named PROMBA, and
we evaluated it on MBA expressions generated by state-of-
the-art obfuscators. Our evaluation results demonstrate that
our approach outperforms the state-of-the-art deobfuscator,
MBASOLVER [41].

The rest of the paper is organized as follows. Section 2 introduces
preliminaries. Section 3 presents our approach in detail. Section 4
describes the implementation of our approach. Section 5 presents
the evaluation results. Section 6 discusses the limitations of our
approach. Section 7 discusses related work. Lastly, Section 8 con-
cludes the paper.

Simplifying Mixed Boolean-Arithmetic Obfuscation

2 BACKGROUND

In this section, we introduce the basic concepts of Mixed Boolean
Arithmetic (MBA) obfuscation, syntax-guided program synthesis,
and term rewriting.

2.1 MBA Obfuscation

We first introduce the basic concepts of MBA expressions from the
work of Zhou et al. [43].

Boolean-Arithmetic Algebra. Boolean-arithmetic algebra is an
algebraic system that consists of arithmetic operations and bitwise
operations. Arithmetic operations include addition +, subtraction
—, multiplication X, division /, modulo operation %, left shift <<,
logical right shift >>, and arithmetic right shift >>° operations. Bit-
wise operations include bitwise and A, or V, not =, and exclusive-or
& operations. With n-bit 2’s complement representation, arithmetic
operations are in Z/2"Z and bitwise operations are in B" where
B = {0, 1}. n is called the dimension of the algebra.

Polynomial and Linear MBA Expressions. With the Boolean-
arithmetic algebra of dimension n and a positive integer ¢, any
function f : (B™)’ — B™ over t variables over B" is an MBA
expression. In particular, a function f : (B®)! — B" of the form

Zai(l_[eij(x1, -+, x¢))

iel jeJ;

is a polynomial Mixed Boolean-Arithmetic (MBA) expression where
a; are constants in Z/2"Z and e; ; are bitwise expressions of vari-
ables xq,- -+ ,x; over B", I C Z, and Vi € I. J; C Z are finite index
sets. A constant can be viewed as a bitwise expression of the form
ae(x1,- -+ ,x;) where aisaconstantin Z/2"Z and e(x1,- -+ ,x¢) isa
bitwise expression of variables x1, - - - , x; over B” that always eval-
uates to 1. For example, the MBA expression 8(x V y V z)3((xy) A
x V1) +x+9(x Vy)yz> is a polynomial MBA expression.

A linear MBA expression is a polynomial MBA expression of the

form

Zaiei(x1, Ce LX)

iel
For example, the MBA expression x + y — 2(x V y) + 1 is a linear
MBA expression.

Any MBA expression not a polynomial MBA expression is a non-
polynomial MBA expression. A non-polynomial MBA expression
may contain arithmetic operations other than addition, subtraction,
multiplication, or bitwise expressions with constants. For example,
the MBA expression (x >> 1) + y — 3(x A 2) is a non-polynomial
MBA expression.

The work by Zhou et al. [43] provides the theoretical foundations
for MBA obfuscation. It is shown that every operation in Boolean-
arithmetic algebra can be expressed as a high-degree polynomial
MBA expression of multiple terms over arbitrarily many variables.

2.2 Term Rewriting

Next, we introduce the basic concepts of term rewriting from the
work of Baader and Nipkow [5].

2353

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Figure 2: Tree representation of the term s = (x+y) — 2(x A y)
and its positions.

Term. Given a set ¥ of function symbols, where each f € 7
is associated with a natural number n called the arity of f (de-
noted arity(f)) and a set X of variables, 7 x is the set of terms
built from functions in # and variables in X. In other words,
X CTgxandVf € F. f(t1, -+ ,tn) C TFx Where n = arity(f)
and t1,--- ,ty € 77}-, x- Function symbols of 0-arity are constants.
We will often denote a function symbol of arity 2 as an infix opera-
tor and Var(s) and Const(s) as the set of variables and constants
in term s respectively. MBA expressions in the Boolean-arithmetic
algebra of dimension n are terms over the arithmetic and bitwise
operations and variables and constants over B".
The structure of a term can be illustrated by a tree.

Example 2.1. Consider an MBA expression s = (x+y) —2(x A y)
over the Boolean-arithmetic algebra of dimension n. s is a term over
T#.x where ¥ is the set of arithmetic and bitwise operations and
constants over B"”, and X = {x, y}. The term s can be represented
by the tree in Figure 2.

Position. The set of positions of term s (denoted Pos(s)) of strings
over the alphabet of natural numbers is defined recursively as
follows:

e if s is a variable or a constant, then Pos(s) = {e};
o if s = f(t1,---,tn), then Pos(s) = {e} U UL {ip | p €
Pos(t;)}.

The position € is called the root position of s. For p € Pos(s), the
subterm of s at position p (denoted s|,) is defined by (i) s|e = s; (ii)
f(t1,- . tn)lig = tilg- The number of positions of s is denoted |s|.
The height of s (denoted Height(s)) is defined as max, ¢ pos(s) Ipl-
We denote s[p « t] as the term obtained by replacing the subterm
of s at position p with t.

Example 2.2. In Figure 2, the positions of s are €, 1, 2, 11, 12, 21,
22, 221, 222, which are written on top of the corresponding nodes.
The size of s is 9 because we have 9 positions, and the height of s
is 3 because the longest position 222 has length 3. The subterm of
s at position 22 is s |22= x A y and the term obtained by replacing
the subterm of s at position 22 with z is s[22 « z] = (x +y) — 2z.

Substitution. A substitution o is a function from X to 7# x. The
set of substitutions over 7 y is denoted Sub(7# x). Every substi-
tution o can be immediately extended to a function ¢’ from 7 y to
T# x asfollows: (i) o’ (x) = o(x) forallx € X; (i) o’ (f(t1,- -+ ,tn)) =

CCS *23, November 26-30, 2023, Copenhagen, Denmark

fla'(t1),---,0'(ty)) forall f € F and 11, ,t, € TF x. From
now on, we will use o to denote ¢’ with a slight abuse of notation.

Example 2.3. Let 0 = {x — 1,y — z + 1}. Then, for the term s
in Example 2.1, 0(s) = (1+ (z+ 1)) —2(1 A (z+ 1)).

Term Rewriting. A rewrite rule is a pair (s, t) (written s — t)
where s,t € 7# x., s is not a variable, and Var(t) C Var(s). A term
rewriting system consists of a set E of rewrite rules over 7# x. The
rewrite relation — is defined as follows:

s—pte 3l —r ek pe Pos(s),o € Sub(T x).
slp=a(D),t =s[p « a(r)].
Example 2.4. LetE={a+b — (a®b)+2(anb),(a+b)—c—

a+(b—-c),a—a— 0,a+0 — a}. Then, we can rewrite the term s
in Example 2.1 as follows:

s =g (x@y)+2(x Ay)) —2(x Ay)

(byusinga+b — (a®b)+2(anb)ando={a x,b— y})

—p (x@y) + (2(xAy) -2(x Ay))

(by using (a+b) —c — a+ (b—c)) and

oc={a (x®y),b— 2(xAy),c— 2(xAy)})
—p (x®y)+0

(byusinga—a — 0and o ={a+ 2(x Ay)})
—p (x®y)

(byusinga+0 - aando={a (xdy)}).

2.3 Syntax-Guided Synthesis

Lastly, we introduce the basic concepts of syntax-guided synthe-
sis [3].

Context-Free Grammar. A context-free grammar is a tuple
G = (N,2,S,5) where N is a finite set of non-terminals, X is a
finite set of terminals, S € N is the start non-terminal, and § is
a set of production rules of the form Ay — f(Aj,---,A,) where
Ao+ ,An €N, f € %, and arity(f) = n. Given a term t € TF.x>
applying a production rule A — f € § to t replaces an occurrence
of a non-terminal A in t with . All terms that can be generated by
G are called the language of G and denoted by L(G).

Syntax-Guided Synthesis. The syntax-guided synthesis (Sy-
GuS) problem [3] is a tuple (G, ®). The goal is to find a term
p € L(G) that satisfies the specification @ in a decidable theory
7. We assume that each term p is with a deterministic seman-
tics (denoted [[p]). The specification @ is a formula ®(x, p) that
relates the input x and the output [[p]] (x) of p. The goal is to find
aterm p € L(G) such that Vx. @(x, [p] (x)) is valid modulo the
decidable theory 7". We often call G the syntactic specification and
Vx. ®(x, [p]] (x)) the semantic specification.

Simplifying an MBA expression can be formulated as a syntax-
guided synthesis problem where the syntactic specification is a
grammar of MBA expressions and the semantic specification is a
formula representing the equivalence between the original MBA
expression and the simplified one.

The grammar is actually called regular tree grammar. However, we stick to the more
familiar name context-free grammar for simplicity of presentation.

2354

Jaehyung Lee and Woosuk Lee

Example 2.5. Suppose that we want to simplify the MBA ex-
pression s in Example 2.1. This problem can be formulated as a
syntax-guided synthesis problem The syntactic specification is the
grammar G = ({S,V,C}, F UX, S, §) where § comprises the follow-
ing production rules:

S — VI|C|S+S|S®S|SAS|S=-S]|:---
V - x|y
C — o0|1]2]---

The non-terminal V represents the set of variables X. The non-
terminal C represents a set of constants. The start non-terminal S
represents the set of all MBA expressions involving the variables
and constants.

The semantic specification is the following formula defined in
the theory of bit-vectors of fixed-width n:

Vx,y € B™. [p] (x.y) = [s] (x.y)

where p is the term to be synthesized. Given this problem, an
existing SyGusS solver [42] can find the minimal solution p=x ® y
less than 0.1 seconds.

Among the existing SyGuS solvers based on various synthesis
strategies, enumerative solvers [4, 16, 26, 42] are the most suitable
for our purpose. That is because they enumerate all the candidate
solutions in a certain order guaranteeing that the first solution
found is minimal. On the other hand, other strategies such as sto-
chastic search [38] or probabilistic model-based search [7, 27] may
find a solution which is not minimal.

3 OUR APPROACH

This section describes our approach to the problem of simplifying
MBA expressions.

In theory, by using a sound and complete SyGusS solver as de-
scribed in Section 2, we can find a minimal sub-expression that is
semantically equivalent to an original MBA expression. However,
in practice, because MBA expressions are usually very large, this
method is not feasible due to the scalability issue of SyGuS solvers.

To address this scalability issue, we adopt a divide-and-conquer
approach that simplifies a given MBA expression by recursively
simplifying its sub-expressions. We divide the MBA expression into
multiple sub-expressions, simplify each sub-expression, and then
combine the simplified sub-expressions to obtain a simplified MBA
expression. This process is repeated until no further simplification
is possible.

3.1 The Overall Algorithm

The pseudocode of our algorithm is shown in Algorithm 1. The al-
gorithm is inspired by the prior work on optimizing homomorphic
encryption circuits using syntax-guided synthesis [25]. Though
the overall structure of the algorithm is similar to the prior work,
the key difference between our algorithm and the prior work [25]
lies in the learning process. While the prior work relies on offline
learning, where simplification rules are learned from a set of train-
ing examples and subsequently applied to target expressions, our
algorithm performs on-the-fly learning of rules. As will be demon-
strated in Section 5.4, this on-the-fly learning approach is more
effective than the offline learning approach.

Simplifying Mixed Boolean-Arithmetic Obfuscation

Algorithm 1 The on-the-fly learning-based MBA Deobfuscation

Require: P: obfuscated MBA expression of n-bit input variables
Ensure: p: simplified MBA expression
1: p « SimplifyLinearMBAs(P)
2 he1 > Height of sub-expressions to simplify
32 E—0 > Rule set
4: while h < Height(p) do
5: W « Pos(p) » Positions of sub-expressions to simplify
6 while W # 0 do
7: remove a pos from W
8: (r,0) < ChooseSubExpr(p |pos, h)
9 r’ « Synthesize(r)

10: if ¥ = 1 then

11: continue

12: else if |r’| < |r| then

13: E « E U {GeneralizeRule(r — r’)}
14: p « plpos — a(r')]

15: p « ApplyRule(E, p)

16: p « SimplifyLinearMBAs(p)
17: W « Pos(p)

18: end if

19: end while

20: h—h+1

21: end while
22: return p

The algorithm takes as input an obfuscated MBA expression
P and returns a simplified MBA expression p. At each iteration,
the algorithm chooses a sub-expression e of a bounded height, and
attempts to synthesize a simpler sub-expression e’ that is equivalent
to e. Then, the algorithm applies the rule e — e’ to the other sub-
expressions to take advantage of the simplification. The algorithm
terminates when no further simplification is possible.

The algorithm first identifies linear MBA sub-expressions in P
and simplifies them (line 1) using an off-the-shelf deobfuscator for
linear MBA expressions [29, 34, 41]. After this step, all the linear
MBA sub-expressions in P are simplified, but the other non-linear
MBA sub-expressions may be further reducible. Then, it initializes
the maximum height h of sub-expressions to consider to be 1, the
rule set E to be empty, and the set of positions W of sub-expressions
to be the set of all positions of P (lines 2-5).

At each iteration of the inner loop, Given a position pos of a sub-
expression to consider (line 7), the ChooseSubExpr function chooses
a sub-expression r of height at most A at the position pos (line 8).
The ChooseSubExpr function substitutes some sub-expressions
with fresh variables and returns the resulting sub-expression r and
the substitution o. Section 3.2 describes how to implement the
ChooseSubExpr function.

Example 3.1. Consider the following MBA expression p:

P = (((x2 X x3) A (=x1)) +x2) = ((x1 V (x2 X x3)) A (x2 = x1))

whose height is 4. Suppose that the height & is 2 and the selected
position is the root position. Then, given the subterm p |¢ and h,
the ChooseSubExpr function returns the sub-expression

r=(t1+x2) = (t2 A t3)

2355

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

along with a substitution
o= {tl = x9 X x3,1 > x1V (xz X x3), 3 > X2 —xl}.

Note that the height of r is 2 and 1, ¢, and t3 are fresh variables
used to abstract away the corresponding sub-expressions to make
the height of r at most h.

Next, the algorithm invokes a SyGusS solver to synthesize a sim-
pler sub-expression r’ that is equivalent to the sub-expression r
(line 9). If the synthesis fails, the algorithm continues to another
sub-expression (line 10). If the synthesis succeeds and the size of
the synthesized sub-expression r’ is smaller than the size of the
original sub-expression r (line 12), then it means we can obtain a
rewrite rule r — r’.

To maximize the chance of applying the rule r — r’ to other sub-
expressions, the algorithm generalizes the rule r — r” by replacing
sub-expressions that appear both in r and r” with variables (line 13),
and adds the generalized rule to the rule set E. After replacing the
old sub-expression r with the new sub-expression r’ in p (line 14),
it applies the rules in E to other sub-expressions of p to which the
rule r — r’ can be applied (line 15).

After this process, existing non-linear MBA sub-expressions
may become linear MBA sub-expressions, and thus the algorithm
simplifies them again (line 16) using a linear MBA deobfuscator.

The algorithm then updates the set W to be the set of all positions
of the newly obtained expression p (line 17), and repeats the inner
loop.

Because the set W is updated only when the expression p is
changed, the inner loop terminates when no further simplification
is possible (line 19). Then, the algorithm increases the height h of
sub-expressions to consider by 1 (line 20), and repeats the inner
loop again until the height h of sub-expressions to consider exceeds
the height of p (line 21). Finally, the algorithm returns the obtained
expression p (line 22).

The reason why we increase the height h of sub-expressions to
consider is that the algorithm may fail to simplify a sub-expression
of a limited height if reducible parts of the sub-expression are
abstracted by fresh variables. However, the algorithm may be able
to simplify it if the height of the sub-expression is increased.

Example 3.2. Consider the MBA expression p and its sub-expression

r in Example 3.1. If we try to synthesize a simpler sub-expression
that is equivalent to r of which the height is 2, the synthesis fails
to find a simpler sub-expression. However, if we try to synthesize
a simpler expression equivalent to p in Example 3.1 of which the
height is 4, the synthesis succeeds to find a simpler sub-expression
x1 V ((x2 X x3) V (x2 — x1)) and obtaining the following rewrite
rule:

(((x2 X x3) A (1)) +x2) = ((x1 V (32 X x3)) A (32 = x1))
— x1 V ((x2 X x3) V (x2 — x1))
Our algorithm is correct and terminating in the following sense.

THEOREM 3.3. Algorithm 1 eventually returns a simplified MBA
expression p that is equivalent to the input MBA expression P.

3.2 The ChooseSubExpr Procedure

The ChooseSubExpr function depicted in Algorithm 2 chooses a
sub-expression r of height at most h of a given expression e. If the

CCS *23, November 26-30, 2023, Copenhagen, Denmark

Algorithm 2 ChooseSubExpr

Require: e: input MBA expression
Require: h: maximum height of sub-expressions to consider
Ensure: a sub-expression of e
Ensure: a substitution from variables to expressions
1: if Height(e) < h then
2 return (e, 0)
3: else if h = 0 then
4 x «anew fresh variable
5 return (x, {x — e})
6 else
7 o« 0
8 for i « 1 to number of children of e do
9 (r,a’) « ChooseSubExpr(e |;,h—1)

10: e —eli—r]
11: oc—oUo’
12: end for

13: return (e, o)

14: end if

given expression e has height at most h, the function returns the
expression e and an empty substitution (line 2). If the height A is 0,
the function returns a fresh variable x and a substitution {x — e}
(lines 4-5). Otherwise, the function chooses a sub-expression r
of height at most h — 1 for each child of e (line 8). During this
process, the function maintains a substitution o from variables to
expressions (line 7), which is initially empty. As the children of e
are processed, the function updates the expression e by replacing
the i-th child of e with the sub-expression r of the limited height
(line 10), and updates the substitution o by conjoining ¢’ (line 11).
Finally, the function returns the expression e and the substitution
o (line 13).

3.3 The Synthesize Procedure

Given a sub-expression e where Var(e) = {x1,...,x;} and Const(e) =
{c1,...,cm}, the Synthesize procedure aims to find a new sub-
expression e’ that is semantically equivalent to e. This problem
is formulated as a SyGuS problem as follows. The target expres-
sion is e’ and the background theory is the theory of bit-vectors of
fixed-width n. The syntactic specification for e’ is

S - V|C|S+S|S=S|SxS]|--

V -
C -

x| x| | xe
Ol1]cilea| - lem

where S is the start symbol, and V and C are non-terminals for vari-
ables and constants, respectively. We include all the logical and arith-
metic operators in the theory of bit-vectors in the production rules
for S. Precisely, the operators we use are (in SMT-LIB [8]) bvadd,
bvsub, bvmul, bvdiv, bvudiv, bvrem, bvurem, bvshl, bvashr,bvlshr,
bvneg, bvand, bvor, bvxor, and bvnot. The semantic specification
for e’ is

Vx1, X, , Xt € B". e(xls"' ;xt) = e/(xly"' >xt)-

The Synthesize procedure encodes this SyGuS problem in the SYNTH-
LIB format [3] and invokes a SyGusS solver to solve the problem.

2356

Jaehyung Lee and Woosuk Lee

Note that the SyGuS problem for the Synthesize procedure is de-
cidable because SyGuS problems with the theory of quantifier-free
bit-vectors without bitstring concatenation are decidable since the
domain is finite [14]. Furthermore, all enumerative SyGuS solvers
including EUSOLVER [4], DUET [26], and SIMBAS [34] are sound and
complete in that they always return a solution if there exists one.
However, these solvers are not guaranteed to terminate within a
given timeout. If the solver returns a solution within the given time-
out, the procedure returns the solution as the new sub-expression
e’. Otherwise, the procedure returns L.

3.4 The GeneralizeRule Procedure

The GeneralizeRule procedure generalizes a rule [— r in a similar
way to the Normalize procedure in the work by Lee et al (Section
4.2.4 in [25]). It first identifies sub-expressions that are common to
both [and r. Then, it replaces the common sub-expressions with
fresh variables.

Example 3.4. Consider the rewrite rule in Example 3.2. The com-
mon sub-expressions that are shared by both left-hand side and
right-hand side are x3 X x3 and x3 — x;. If we replace these common
sub-expressions with fresh variables y; and yz, respectively, the
rule becomes

((y1 A (mx1)) +x2) = ((x1 Vy1) Ayz) = x1 V(Y1 V y2).

Because the replacement of common sub-expressions with fresh
variables may change the semantics of the rule, it checks whether
the rule is still valid after the replacement using an SMT solver. If the
rule is valid, the procedure returns the generalized rule. Otherwise,
the procedure returns L.

Example 3.5. Suppose we are given the following rule
(anb)yA(bAa) > (anb) AD.

If we replace the common sub-expression (a A b) with a fresh
variable x, the rule becomes

xA(bAa)—> xAb.

This rule is not valid because the left-hand side of the rule is not
equivalent to the right-hand side.

3.5 The ApplyRule Procedure

Given a set of rules E and an expression e, the ApplyRule procedure
applies rules in the set E to e. It is based on the following term
rewriting system whose rewrite relation is defined by the set of
rules E.
s —pt e 3l —rekEpe Pos(s),o € Sub(T¢ x).
slp =), lo(D] > [o(r)].t = s[p < a(r)].

Because our goal is to reduce the size of the expression e, we admit
only those rules that reduce the size of the expression e. This is
why we require that |o(I)| > |o(r)| in the above definition.

The ApplyRule procedure returns a new expression e’ such that

*

e —* e/, where —% is the reflexive transitive closure of — .
E E

E
Since the rewrite relation — is not confluent in general?, the

ApplyRule procedure may return different expressions for the same

2A term rewriting system is confluent if for any terms s, £, £, such that s — #; and
s — o, there exists a term ¢ such that t; »* tand t, —* ¢.

Simplifying Mixed Boolean-Arithmetic Obfuscation

input expression depending on the order of rules in E. To avoid this
non-determinism, the ApplyRule procedure applies rules in E in
a fixed order. In case of multiple rules that can be applied to the
same sub-expression, the procedure applies the rule that is learned
least recently.

3.6 Optimizations

We apply several optimizations to the algorithm to improve the
simplification performance.

Using an Initial Set of Rules. To expedite the simplification
process, instead of starting from the empty set of rules (line 5 in
Algorithm 1), we start from a set of simple rules. For example,
the initial set of rules include basic arithmetic properties such as
xX+0 > x,xxX1—> x,x—x — 0and x X 0 — 0. Though such
simple rules can be learned by the algorithm, we can save the time
to learn them by providing them as the initial set of rules.

Optimizations for the ChooseSubExpr Procedure. Inthe Choos-
eSubExpr procedure, we use the same fresh variable for the same
sub-expression to avoid generating redundant fresh variables. This
optimization is necessary not to miss the opportunity to synthesize
a smaller expression.

Example 3.6. Suppose the procedure is given the following ex-
pression e along with the maximum height s = 1.

(x1 +x2) = (x1 + x2).

According to the ChooseSubExpr procedure as described in Algo-
rithm 8, it first recursively calls itself with the left sub-expression
(x1 + x2) and the maximum height A = 0. Then, it returns a fresh
variable y; for the sub-expression (x1 + x2). Next, it recursively
calls itself with the right sub-expression (x; +x2) and the maximum
height h = 0. Then, it returns another fresh variable y, for the sub-
expression (x1 + x2). The resulting expression and the substitution
are y; —yz and {y; > (x1+x2),y2 — (x1 +x2)}, respectively. The
syntheizer cannot synthesize a smaller expression that is equivalent
to the expression y; — y2 as it cannot recognize that y; and y; are
the same sub-expression. If we use the same fresh variable for the
same sub-expression, the procedure returns the same fresh variable
y for the sub-expression (x1 + x2). Then, the resulting expression
and the substitution would be y; — y; and {y; — (x1 + x2)}, re-
spectively. The synthesizer can synthesize a smaller expression 0
to replace y1 — y1.

To avoid generating different fresh variables for the same sub-
expression, we use a hash table to store the mapping from sub-
expressions to fresh variables and check whether the same sub-
expression has already been assigned a fresh variable. If so, we use
the same fresh variable for the sub-expression.

Optimization for the Synthesize Procedure. If the Synthesize
procedure fails to synthesize an equivalent expression for a given
expression e and e can be viewed as an expression of the form
e1 ®er O -+ O ey, where ® is an associative and commutative
operator and ey, . .
synthesize an equivalent but smaller expression for every possible
pair of sub-expressions e; © e;.

., en are MBA expressions, then we attempt to

2357

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

To understand the necessity of this optimization, consider the
following example.

Example 3.7. Suppose the Synthesize procedure at line 9 in Al-
gorithm 1 fails to synthesize a smaller expression that is equivalent
to the following given expression r:

=5y + (9(=x) + (5(x A y) + xy)).
The failure of the Synthesize procedure does not necessarily mean
that the given expression is already the smallest expression. Indeed,
there is a sub-expression e = =5y + 5(x A y) that can be simplified
into =5(y A (=x)).

Not to miss such a simplification opportunity, we can treat as-
sociative and commutative binary operators as n-ary operators
and regard every possible combination of operands of the n-ary
operator as a potential sub-expression to be simplified. However,
this may result in a large number of sub-expressions for which we
need to synthesize equivalent but smaller expressions. To reduce
the number of sub-expressions, we consider only pairs of operands
of the n-ary operator.

For the expression r, we attempt to synthesize an equivalent
but smaller expression for each of the following sub-expressions:
—5y+5(xAy), —5y+xy, —5y+9(—x), 5(xAy)+xy, 5(xAy)+9(—x), and
xy + 9(—x). Then, the synthesizer can simplify the sub-expression
=5y + 5(x A y) into =5(y A (=x)). Therefore, we can replace the
sub-expression —5y + 5(x A y) with —=5(y A (—=x)) to obtain the
following expression:

=5(y A (=x)) + (xy + (9(—x))).

If the synthesizer fails to synthesize an equivalent but smaller
expression for every pair of sub-expressions, the Synthesize proce-
dure returns L to indicate that the expression cannot be simplified
further.

4 IMPLEMENTATION

We have implemented our approach as a tool named PROMBA3.
PROMBA is written in OCaml and consists of 2800 lines of code.
As depicted in Algorithm 1, our PROMBA system consists of three
major components: (1) a linear MBA deobfuscation engine, (2) a
SyGusS solver, and (3) a verifier for checking the correctness of
generalized rewrite rules.

Coincidentally, the linear MBA deobfuscation engine and the Sy-
GusS solver used in PROMBA have the same name, SiMBA. To avoid
confusion, we call the linear MBA deobfuscation engine SiMBAD
and and the SyGusS solver SIMBAS in the rest of this paper.

The linear MBA deobfuscation engine StMBAD [34] is based on
algebraic simplification. Given a linear MBA expression, SIMBAD
obtains input-output examples by evaluating the expression with
all possible combinations of zeros and ones considering all input
variables as 1-bit variables. Then, from the input-output examples,
it constructs a linear combination of terms where each term is a
conjunction of input variables. After applying several simplification
rules, it obtains a simpler equivalent expression. This process is
quite effective for linear MBA expressions, but it is not applicable to
non-linear MBA expressions. Therefore, we can use SIMBAD only
for linear MBA expressions.

3Tool is available at https://github.com/astean1001/ProMBA

CCS *23, November 26-30, 2023, Copenhagen, Denmark

We chose SimBAD among the existing linear MBA deobfuscation
tools because it is the most effective tool in terms of success rate
and running time as shown in the previous work [34].

For the SyGusS solver, we use the SIMBAS SyGuS solver [42].
S1MBAS adopts an enumerative search strategy that synergistically
combines the top-down and bottom-up enumerative search strate-
gies. Most of all, SIMBAS is specialized for the synthesis of bit-vector
expressions by using a highly precise static analysis for bit-vectors
to prune the search space. Therefore, according to the experiment
in [42], SIMBAS is the most efficient SyGusS solver for synthesizing
bit-vector expressions. For each SyGuS query, we set the timeout
to 20 seconds.

Lastly, for verifying the correctness of generalized rewrite rules,
we use the Z3 SMT solver [17].

5 EVALUATION

This section evaluates our PROMBA system to answer the following
research questions:

RQ1: How effective is PRoMBA for deobfuscating MBA ex-
pressions in terms of success rate and running time?

RQ2: How does PROMBA compare with the state-of-the-art
MBA deobfuscation tool?

RQ3: What is the impact of the underlying synthesis engine
on the performance of PROMBA?

RQ4: How effective is PROMBA’s on-the-fly learning of
rewrite rules?

RQ5: How effective is PROMBA’s optimization techniques
described in Section 3.6?

All of our experiments were conducted on a Linux machine with
Intel Xeon 2.6GHz CPUs and 256GB of memory. Furthermore, we
use n = 64 bits in all experiments (i.e., all input variables of MBA
expressions are 64-bit variables).

5.1 Experimental Setup

Datasets. We aim to evaluate PROMBA using a large number of
non-linear MBA expressions. Note that we do not consider linear
MBA expressions in our evaluation. PROMBA deobfuscates any
linear MBA sub-expressions using the state-of-the-art linear MBA
deobfuscation tool SIMBAD [34], thereby focusing on more compli-
cated non-linear MBA sub-expressions. Since applying PROMBA on
linear MBA expressions is simply equivalent to applying SiMBAD,
we exclude existing datasets containing only linear MBA expres-
sions, such as the Neureduce dataset [19].

Table 1 summarizes the characteristics of the datasets. The ground
truth (i.e., the original expression before obfuscation) is available for
every MBA expression in the datasets. We collect 4011 non-linear
MBA expressions from the following sources:

o MBA-Solver dataset: This dataset comprises 2011 MBA
deobfuscation problems used to evaluate MBASOLVER [41].
The dataset contains both non-linear polynomial and non-
polynomial MBA expressions.

e QSynth dataset: This dataset comprises 500 MBA deob-
fuscation problems used to evaluate QSyNTH [16]. The 500
MBA expressions are obfuscated with the EncodeArithmetic
scheme [15] in the TIGRESS obfuscator [2].

2358

Jaehyung Lee and Woosuk Lee

o Loki dataset: This dataset comprises 1500 MBA deobfusca-
tion problems. All of the MBA expressions are obfuscated
with the recursive and randomized expression rewriting
method used in the Loxr obfuscator [39]%. Among them,
1000 MBA expressions were used to evaluate the obfusca-
tion resilience of LokI against existing four MBA deobfusca-
tion tools (MBABLAsT, SSPAM, ArBYO, and NEUREDUCE). To
meet the various requirements of the four tools, these 1000
MBA expressions are in a limited form that only contains
addition, subtraction, logical and, logical or, and logical xor
operations without any constants. To evaluate the effective-
ness of PROMBA against the full-fledged MBA obfuscation,
we additionally generate 500 MBA expressions that contain
constants and all of the arithmetic and logical operations by
using the full-fledged MBA expression generator in LOKI.

Baseline MBA Deobfuscator. We compare PROMBA to two
state-of-the-art MBA deobfuscation tools: MBASOLVER [41], which
guarantees the correctness of deobfuscation but can only deobfus-
cate a limited class of non-linear MBA expressions, and SYNTIA [10],
which can deobfuscate a wide range of non-linear MBA expressions
but does not guarantee the correctness of deobfuscation.

MBASOLVER [41] is specialized for deobfuscating linear MBA
expressions, but it can also deobfuscate a limited class of non-linear
MBA expressions that only contain addition, subtraction, multiplica-
tion, logical and, logical or, and logical not operations. MBASOLVER
transforms bitwise sub-expressions in an MBA expression into lin-
ear ones and uses various heuristic rules to further simplify the
expression. The rules include replacing common sub-expressions
with variables, using a pre-computed mapping table for commonly
used MBA expressions, and the common math rules such as the
distributive law and additive cancellation. MBASOLVER requires
the user to provide additional information about a target MBA ex-
pression if it contains a non-polynomial sub-expression. It replaces
the non-polynomial sub-expression with a fresh variable, performs
deobfuscation on the substituted polynomial expression, and then
reverts the substitution to obtain the final result. The user provides
the information about which sub-expression to substitute. We pro-
vide the largest and most frequently appearing non-polynomial
sub-expression. We let MBASOLVER perform deobfuscation on ev-
ery sub-expression until there are no more sub-expressions that
can be reduced by it.

SYNTIA [10] is capable of deobfuscating any arbitrary MBA ex-
pression by synthesizing a deobfuscated expression from finitely
many input-output examples. The correctness of the deobfuscated
result is not guaranteed. SYNTIA’s algorithm is based on Monte
Carlo Tree Search (MCTS), which is a heuristic search algorithm
with a random component. For each deobfuscation task, we exe-
cute SYNTIA 30 times, each with 10 randomly selected input-output
examples, and select the best outcome as the final result.

There are other MBA deobfuscation tools which we do not com-
pare against due to the following reasons.

e SiMBAD [34], MBABLAST [29]: These tools only target linear
MBA expressions.

4The recursive expression rewriting bound, which is the maximum number of subse-
quent applications of rewriting rules to an expression, is set to 30.

Simplifying Mixed Boolean-Arithmetic Obfuscation

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Table 1: Characteristics of the datasets. “Type" indicates the number of (non-linear) polynomial and non-polynomial MBA
expressions. “#Vars", “Size", and “Original Size" report the number of input variables, the size of the obfuscated MBA expressions,
and the size of the original expressions before obfuscation (i.e., ground truth), respectively.

Datasets Type #Vars (Min/Max/Avg) Size (Min/Max/Avg) Original Size (Min/Max/Avg)
MBA-Solver Poly: 1008 Non-poly: 1003 1/4/279 4/606/191.89 1/32/13.17
QSynth Poly: 0 Non-poly: 500 1/3/232 13/ 2593/ 245.8 6/21/13.4
Loki Poly:3 Non-poly: 1497 1/4/2.16 17 / 34553 / 1568.53 3/7/3.65
Total Poly: 1011 Non-poly: 3000 1/4/25 4 /34553 /713.44 1/32/9.64
§100 o ProMBA éeoo o ProMBA é o ProMBA
S 90 MBA-Solver o MBA-Solver o 15000 MBA-Solver
3 : ° : '° A Syntia
3 . Syntia 8 400/ 4 Syntia f4
@© © ©
% 60 8 10000
2 2 2
Qo Qo Q
o 40 [} [}
8 3200 S 5000
G 20 5 . -
2 8 — N
[2I] o 0 [} 0
0 500 1000 1500 2000 0 200 400 0 500 1000 1500

#. of deobfuscated exprs in in MBA-Solver Dataset

(a) Size of deobfuscated expressions (MBASolver)

#. of deobfuscated exprs in QSynth Dataset

(b) Size of deobfuscated expressions (QSynth)

#. of deobfuscated exprs in in Loki Dataset

(c) Size of deobfuscated expressions (Loki)

Figure 3: The distribution of the size of deobfuscated expressions for each dataset. We compare the results of PROMBA with

those of MBASOLVER and SYNTIA.

e SSPAM [18] and NEUREDUCE [19]° : These tools have been
shown ineffective in deobfuscating large non-linear MBA
expressions [39].

QSyNTH [16] and XYNTIA [31]: The core algorithms of these
tools are similar to SYNTIA, which is synthesis from random
input-output examples. Therefore, we believe that comparing
SyYnTIA with PROMBA suffices for our evaluation.

GamBaA [35]: The tool was not publicly available at the time
of writing. We qualitatively compare PROMBA with GAMBA
in Section 7.

Evaluation Metrics. We evaluate PROMBA in terms of the fol-

lowing metrics:

o Size of the deobfuscated expression: Considering expres-
sions as abstract syntax trees (ASTs), we measure the size of
deobfuscated expressions by the number of AST nodes.
Success Rate: We measure the success rate of the tools. We
consider a deobfuscation task to be successful if the size of
the deobfuscated expression is smaller than or equal to the
size of the ground truth, and the deobfuscated expression
is semantically equivalent to the ground truth. Since the
ground truth is not necessarily the smallest expression in
terms of the semantics, a deobfuscated expression may be
smaller than the ground truth.
o Time: We measure the time taken by the tools for deobfus-
cation with a timeout limit of 1 hour. In case of timeout, an

5In particular, NEUREDUCE can handle MBA expressions with up to 100 characters in
length, which is not the case for most of the MBA expressions in our dataset.

2359

intermediate result simplified so far is considered the final re-
sult in case of PROMBA and MBASOLVER. In case of SYNTIA,
if the timeout occurs, the tool returns no result.

5.2 Effectiveness of PROMBA

Deobfuscation Effectiveness. Table 2 summarizes the over-
all performance of PROMBA, MBASOLVER, and SYNTIA. Overall,
PROMBA outperforms MBASOLVER in all metrics. PROMBA suc-
cessfully simplifies 84.4% of the MBA expressions with an average
time of 100 seconds. Most notably, the average size of the deobfus-
cated expressions produced by PROMBA is 9.39, which is smaller
than the average size of the ground truth (9.64). On the other hand,
MBASOLVER is able to successfully simplify only 13.2% of the MBA
expressions with an average time of 141 seconds. MBASOLVER pro-
duces deobfuscated expressions with an average size of 344.5, which
is much larger than the average size of the ground truth. SynTIA
simplifies only 39.4% of the MBA expressions with an average time
8.8 seconds. While SyNTIA is faster than PROMBA, it can only deob-
fuscate expressions whose ground truth is small (< 7 in AST size),
which is reflected in the small average size of the deobfuscated
expressions.

The performance of PROMBA is stable across the datasets. For ev-
ery dataset, it generates smaller expressions than the ground truth
on average. On the other hand, MBASOLVER generates larger expres-
sions than the ground truth on average except for the MBA-Solver
dataset, and SYNTIA often fails to deobfuscate MBA expressions
in the MBA-Solver and QSynth datasets. This result suggests that
PROMBA is not limited to a specific type of obfuscation, and gener-
ally applicable to the state-of-the-art MBA obfuscation techniques.

CCS *23, November 26-30, 2023, Copenhagen, Denmark

Jaehyung Lee and Woosuk Lee

Table 2: Statistics of the deobfuscated expressions generated by PROMBA and MBASOLVER. The numbers in bold indicate the

best results.

Size (Avg.) Success Rate Time (Avg.)
Dataset PrROMBA MBASOLVER SYNTIA PrROMBA MBASOLVER SYNTIA PrROMBA MBASOLVER SYNTIA
MBA-Solver 11.76 21.67 4.61 80.31% 25.16% 17.45% 65.64s 6.3s 12.95s
QSynth 17.48 77.71 4.72 62.8% 4.2% 22.8% 241s 64.83s 12.37s
Loki 3.51 866.25 3.1 97.2% 0.13% 74.4% 100.03s 347.77s 2.07s
Total 9.39 344.5 3.55 84.44% 13.19% 39.42% 100.36s 141.29s 8.81s

Table 3: Results for 15 randomly chosen deobfuscation tasks (“Obf” and “Orig.”: the sizes of the obfuscated expression and
the ground truth, “L.Time”, “S.Time”, “R.Time”: the portion of time spent on the linear deobfuscator, synthesizer and term
rewriter resp., “L.Reduce”, “S.Reduce”: the portion of size reduced by the linear deobfuscator and synthesizer resp., “# Rules”:

the number of rules, “# Rewrites”: the number of rule applications, “Size”: the size of the deobfuscated expression (“-” indicates
a failure), “Time”: the time taken for deobfuscation by each tool).
MBASOLVER SYNTIA ProMBA

Dataset ID Obf. Orig. Size Time Size Time Size Time LTime S.Time R.Time L.Reduce S.Reduce #Rules #Rewrites
Loki 227 621 3 349 393s 3 0.15s 3 90s 42s 36s 12s 80.1% 19.9% 38 13
Loki 364 2438 3 1689 194s 3 029 3 364s 33s 221s 110s 14.91% 85.09% 99 1274
Loki 1029 312 7 139 11s - 0.14s 3 22s 15s 6s 1s 74.43% 25.57% 11 27
Loki 1124 753 6 208 29s 5 5.51s 5 30s 16s 11s 3s 44.92% 55.08% 14 61
Loki 1235 1139 7 950 88s 3 0.16s 2 21s 19s 1s 1s 11.52% 88.48% 5 19
MBA-Solver 410 53 17 25 0.04s - 16.29s 15 136s 15s 120s 1s 50% 50% 13 25
MBA-Solver 857 91 22 27 0.04s - 16.60s 21 249s 30s 217s 2s 78.57% 21.43% 13 34
MBA-Solver 1193 442 5 16 0.06s - 1s 5 7s 3s 4s 0s 99.54% 0.46% 12 0
MBA-Solver 1350 260 6 10 0.05s 4 0.22s 4 6s 3s 2s 1s 80.08% 19.92% 13 1
MBA-Solver 1813 472 23 45 0.13s - 15.26s 9 8s 3s 5s 0s 97.62% 2.38% 12 0
QSynth 211 929 19 249 145s - 16.12s 7 90s 38s 40s 12s 15.62% 84.38% 23 44
QSynth 255 257 12 55 46s - 16.08s 10 104s 21s 75s 8s 8.1% 91.9% 18 16
QSynth 283 62 10 24 49s - 16.14s 10 66s 19s 46s 1s 15.38% 84.62% 15 2
QSynth 361 83 13 27 52s - 15.61s 7 31s 8s 20s 3s 42.11% 57.89% 13 4
QSynth 465 395 17 115 54s - 15.52s 43 854s 9s 820s 4s 0% 100% 16 88

Table 4: Statistics of the number of learned rules and appli-
cation of the rules.

Dataset # of Rules (Avg.) # of Applications (Avg.)
MBA-Solver 12.7 9.05
QSynth 16.33 20.14
Loki 46.15 258.97
Total 25.66 103.9

Also, PROMBA is scalable enough to handle large expressions.
With an average time of 100 seconds, it can simplify the Loki dataset
comprising fairly large expressions (up to 34553 AST nodes). On the
other hand, MBASOLVER is more than 3 times slower than PROMBA
on average for the Loki dataset. SYNTIA can quickly deobfuscate
the Loki dataset because the cost of sampling random input-output
examples is irrelevant to the size of the expressions. However, the
correctness of the deobfuscated expressions is not guaranteed.

Result in Detail. We discuss the results for each dataset in detail.
Table 3 shows the results for 15 obfuscated expressions (5 for each

2360

dataset). Out of the 15 expressions, PROMBA generates smaller
expressions than the ground truth in 14 expressions. In contrast,
MBASOLVER cannot generate expressions as small as the ground
truth in any of the expressions.

The results suggest the synergistic combination of linear MBA
deobfuscation, synthesis, and term rewriting enables PROMBA’s
stable performance across all the datasets of different characteris-
tics. For expressions containing many linear MBA sub-expressions
(e.g., MBA-Solver #1193, #1682), the linear deobfuscator can quickly
simplify a large portion of the expression, and the synthesis en-
gine can simplify the remaining small portion of the non-linear
sub-expressions, achieving a good efficiency. For expressions con-
taining few linear sub-expressions (e.g., QSynth #465, Loki #1235),
the synthesizer plays a more important role in simplifying the ex-
pression by synthesizing the non-linear sub-expressions, achieving
a good coverage. For expressions for which specific complex MBA
obfuscation rules are repeatedly applied (e.g., Loki #364), the term
rewriter can efficiently simplify the expressions by reusing the
learned rules, achieving a good efficiency.

In terms of time spent by linear MBA deobfuscation, synthesis,
and term rewriting, synthesis is the most dominant in general. The
linear MBA deobfuscation phase takes less than a minute in all

Simplifying Mixed Boolean-Arithmetic Obfuscation

cases, and the term rewriting phase takes around 10 seconds ex-
cept for one case (Loki #364). However, the synthesis phase takes
up to 13 minutes. This is due to the large search space that the
synthesizer has to explore and the time spent on SMT solving by
the synthesizer. The synthesizer occasionally checks if a solution
candidate is semantically equivalent to the original expression. This
process is done by an SMT solver, which takes a significant amount
of time when the original expression is large and complex. In case
of QSynth #465, the original expression is a high-degree polyno-
mial MBA expression for which checking equivalence is difficult
for the SMT solver. The significant overhead of synthesis leads
to the sub-optimal performance of PROMBA in terms of the size
of the simplified expression because the synthesizer often fails to
find the optimal solution within the time limit. The term rewriting
phase usually takes less than 10 seconds except for Loki #364 where
the term rewriting phase takes about 2 minutes. Because there are
many rules that can be applied to the expression in Loki #364 (99
rules in total, which is the largest number of rules applied in all the
deobfuscation tasks), and the target obfuscated expression is large
(2438 nodes), searching for a sub-expression that can be replaced
by another according to the rules takes a long time. Similar obser-
vations can be made for many other tasks in the Loki dataset. The
number of rules learned in the Loki dataset is 46 on average, which
is larger than the number of rules learned in the other datasets
(16 and 12 on average for QSynth and MBA-Solver, respectively).
Therefore, the term rewriting phase takes 4 and 16 times longer
in the Loki dataset than in the QSynth and MBA-Solver datasets,
respectively.

Learning Capability. We evaluate the learning capability of
PROMBA by measuring the number of rewrite rules learned during
the deobfuscation process and the number of times the learned
rules are applied to rewrite expressions. Table 4 summarizes the
results. On average, PROMBA learned an average of 25.7 rewrite
rules and applied them 103.9 times. The rule sizes (the size of a rule
I — ris measured by |I|) range from 3 to 224, with an average of 3.4.
PrROMBA learns fewer rules for the MBA-Solver dataset and applies
them fewer times compared to the other datasets. This is because
the MBA-Solver dataset contains many linear MBA sub-expressions
which can be simplified by the linear MBA deobfuscator, leaving
fewer opportunities for the synthesizers to learn rules.

We observe that PROMBA can learn and apply complex rules
that can be hardly discovered by human experts. For example, the
following intricate rules enable PROMBA to significantly simplify
the expressions in the Loki dataset.

G+ Ax) vy + YV (Y <) Ax) = xV -y
On the other hand, MBASOLVER cannot simplify the left-hand side
of the above rule because it is a non-polynomial MBA expression
beyond the scope of MBASOLVER.

Failure Analysis. The inability of PROMBA to achieve success
in 16% of the entire dataset is primarily attributed to the limited
scalability of the SyGuS solver and the SMT solver. To investigate
why PROMBA fails to deobfuscate some expressions, we randomly
selected 100 failed cases evenly from the three datasets and at-
tempted to double the allowed time for each synthesis attempt. As a

2361

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

result, 71 of the 100 cases became successful. However, the other 29
cases still failed even with the extended synthesis time due to the
limitations of the SMT solver. In these instances, the SMT solver
could not determine the equivalence between the ground truth and
a solution candidate generated by the synthesizer within the time
limit. This result suggests that as the scalability of the SyGuS and
SMT solvers improves, the success rate of PROMBA will increase.

We also analyze the size of the deobfuscated expressions in
the unsuccessful cases. We measure the ratio of the size of the
deobfuscated expressions to the size of the ground truth. In the case
of PROMBA, the average ratio in the MBA-Solver, QSynth, and Loki
datasets is 1.22, 2.05, and 1.73, respectively. The average ratio for
the entire dataset is 1.46. In the case of MBASOLVER, the average
ratio in the three datasets is 1.81, 4.42, and 167.78, respectively. The
average ratio for the entire dataset is 14.92. The result suggests that
PROMBA can generate deobfuscated expressions that are closer to
the ground truth across all datasets.

Summary of the Results. PROMBA can effectively deobfuscate
abroad range of MBA expressions obfuscated by the state-of-the-art
obfuscation tools, and is scalable enough to handle large expres-
sions.

5.3 Comparison to the Baseline Tools

In addition to Table 2 that summarizes the overall performance of
the three tools, Figure 3 visualizes the comparison among the tools
in terms of the size of the deobfuscated expressions by each tool in
each dataset. We sort the deobfuscated expressions by size and plot
them in order of increasing size. The closer to the X-axis, the better
the performance. In case of SYNTIA, the cases of timeout are not
included in the plot because the tool does not generate any output
for those cases.

Comparison to MBASOLVER. PROMBA significantly outper-
forms MBASOLVER in terms of all of the metrics as already shown
in Table 2. In addition, according to Figure 3, PROMBA generates
significantly smaller expressions compared to MBASOLVER in all
datasets. In particular, for the Loki dataset, on average, PRoMBA
generates expressions 200 times smaller than MBASOLVER.

The major reason for the advantage of PROMBA over MBASOLVER
is that the datasets include many MBA expressions that MBASOLVER
cannot support. MBASOLVER gives up on simplifying a large portion
of the expressions in the QSynth and Loki datasets because it cannot
support many operators such as left shift, right shift, division, and
modulo. Also, we observe the heuristic used by MBASOLVER often
fails to simplify expressions that include non-linear sub-expressions.
For example, for the expression =(—((a < 2) & ((a < 2))),
MBASOLVER substitutes the sub-expression (a < 2) with a new
variable ¢ hoping for generating a polynomial expression that can
be simplified by its algebraic method. This results in the expression
—(—(t ®t)), which is still non-polynomial and cannot be simplified
by MBASOLVER. On the other hand, PROMBA does not have such
limitations thanks to its synthesis-based approach.

Comparison to SYNTIA. PROMBA outperforms SYNTIA in terms
of the success rate of deobfuscation as shown in Table 2, but SyNTIA

CCS *23, November 26-30, 2023, Copenhagen, Denmark

Table 5: Result of the comparison between three variants
using different learning strategies.

OnTheFly Offline NoLearn
Time (Avg.) 66.17 18.31 176.95
Size (Avg) 834 25529 8.93
Success Rate 91% 78% 88%

is faster than PROMBA. The average size of the deobfuscated expres-
sions by SYNTIA is smaller than that of PROMBA, but it is due to the
fact that SYNTIA can only generate small expressions as suggested
by the distribution of the solution sizes of SYNTIA in Figure 3.

The reason for the efficiency of SYNTIA is that it does not check
the equivalence between the original and deobfuscated expressions.
It just checks the equivalence with respect to a limited number of
inputs. On the other hand, PROMBA spends a significant amount of
time to check the equivalence between original and deobfuscated
sub-expressions for all inputs during the deobfuscation process.
Because this equivalence check is expensive, PROMBA is slower
than SYNTIA.

The cost for the better efficiency of SYNTIA is that it does not
guarantee the correctness of the deobfuscated expressions. SYNTIA
yields results that are not semantically equivalent to the original
expressions for 11 deobfuscation tasks, whereas PROMBA always
generates semantically equivalent expressions.

Summary of the Results. ProMBA outperforms the state-of-
the-art baseline tools MBASOLVER in all aspects and SyNTIA in
terms of the success rate of deobfuscation. Although SyNTIA is
faster than PROMBA, it does not guarantee the correctness of the
deobfuscated expressions, and it fails to generate a solution when
the ground truth is large. PROMBA is not restricted to small ground
truth expressions, and it guarantees the correctness of the deobfus-
cated expressions.

5.4 Efficacy of On-the-fly Learning of Rewrite
Rules

We now evaluate the efficacy of the on-the-fly learning of rewrite
rules. We compare the performance of three variants of PROMBA,
each using a different learning strategy:

o OnTheFly: This variant learns and applies rewrite rules dur-
ing the deobfuscation process (i.e., the original PROMBA).

o Offline: This variant is similar to [25]. It learns rewrite rules
from a set of training deobfuscation tasks and applies them
to target deobfuscation tasks. No new rules are learned and
used in the target deobfuscation tasks.

e NoLearn: This variant relies only on sythesis for deobfus-
cation. No rules are learned for reuse from the synthesis
attempts.

We compare the performance of three variants on 100 randomly
chosen deobfuscation tasks from the entire datasets. The 100 tasks
are evenly distributed across the datasets. For the Offline variant, we
conduct 2-fold cross validation. That is, we use 50 randomly chosen
tasks for training and the other remaining 50 tasks for testing and

2362

Jaehyung Lee and Woosuk Lee

repeat the process with the two sets of tasks swapped to obtain the
performance of the variant on the entire set of 100 tasks. Again, the
training and testing tasks are evenly distributed across the datasets.

Table 5 summarizes the results. The OnTheFly variant outper-
forms the other two variants in terms of both the size of the de-
obfuscated expressions and the success rate. The Offline variant
is the fastest. This is because it only applies rewrite rules with-
out performing synthesis, which is the most time-consuming part.
However, the average size of the deobfuscated expressions is the
largest among the three variants, and the success rate is the lowest.
That is because it often fails to deobfuscate expressions not covered
by the rewrite rules learned from the training tasks. The Offline
variant is even worse than NoLearn in terms of the success rate.

This result shows that relying on a pre-learned set of rewrite
rules, which is the approach in [25], is not effective for MBA deobuf-
scation due to the highly diverse rules used for MBA obfuscation.

The NoLearn is the slowest among the three variants. That is
because it cannot reuse any rewrite rules and has to perform syn-
thesis multiple times even for the same subexpressions. Therefore it
often exhausts the time limit for each task and returns a suboptimal
solution. This result shows that reusing learned rewrite rules is
essential for efficient deobfuscation.

We further analyze the Offline variant to understand how sensi-
tive it is to the training tasks. Instead of using the training tasks
which are evenly distributed across the datasets, we use 50 tasks
from the Loki dataset and the other 50 tasks from the other two
datasets for training and testing and repeat the process with the
two sets of tasks swapped. The average size of the deobfuscated
expressions is 443.3, which is 1.7 times larger than the average size
of 255.3 when the training tasks are evenly distributed across the
datasets. This result shows that the Offline variant is sensitive to
the training tasks and it is important to use a set of training tasks
diverse enough to cover various obfuscation rules, which is difficult
in practice since the obfuscation rules used in target obfuscated
programs cannot be unknown in advance.

Overall, the results justify the need for our on-the-fly learning
approach to deobfuscate MBA expressions efficiently and effec-
tively.

Summary of the Results. The on-the-fly learning approach is
essential for deobfuscating MBA expressions efficiently and effec-
tively due to the highly diverse rules used in obfuscating MBA
expressions. The offline learning approach [25] is highly sensitive
to training data and exhibits a poor performance when the training
data is biased.

5.5 Impact of the Underlying Synthesizer

We now evaluate the impact of the underlying synthesizer on the
performance of PROMBA. We compare the performance of three
variants of PROMBA, each using a different synthesizer: w/SiMBAS,

w/DUET, and w/EUSOLVER which use SIMBAS, DUET [26], and EUSOLVER

[4] as the underlying synthesizer, respectively. For synthesizing
bit-vector expressions, SIMBAS is the fastest, followed by DUET and
EUSOLVER in terms of synthesis time [26, 34].

We compare the performance of three variants on the 100 deob-
fuscation tasks used in Table 5 in Section 5.4. Table 6 summarizes

Simplifying Mixed Boolean-Arithmetic Obfuscation

Table 6: Result of the comparison between three variants
using different synthesizers.

w/SIMBAS ~ w/DUET w/EUSOLVER
Time (Avg.) 66.17 141.79 153.1
Size (Avg.) 834 1038 10.69
Success Rate 91% 78% 76%
of Rules (Avg.) 20.52 19.14 19.93
Size of Rules (Avg.) 18.05 17.99 11.15
of Applications (Avg.) 95.9 83.34 79.22
Synthesis Time (Avg.) 52.06s 120.72s 136.92s

Table 7: Comparison of two variants of PROMBA with and
without the optimizations in Section 3.6.

w/Opt NoOpt
Time (Avg.) 100.36 192.43
Size (Avg.) 939 2851
Success Rate 84.44% 58.14%

the results. The w/SIMBAS variant significantly outperforms the
other two variants in all aspects. The time taken for synthesis by
the w/SIMBAS variant is more than two times shorter than the other
two variants on average. The result shows that the w/SiMBAS variant
learns larger rules and applies them more frequently than the other
two variants thanks to the best synthesis performance of SIMBAS.

Summary of the Results. The performance of PROMBA is signif-
icantly affected by the performance of the underlying synthesizer.

5.6 Efficacy of the Optimizations

We now evaluate the effectiveness of the optimization techniques
described in Section 3.6. For this purpose, we compare the perfor-
mance of two variants of PROMBA over the entire benchmark set:
w/Opt with all optimizations and NoOpt without any optimizations.

Table 7 summarizes the results. The w/Opt variant significantly
outperforms the NoOpt variant in all aspects. When the optimiza-
tions are not applied, we can observe a 26% decrease in the success
rate, a three-fold increase in the average size of the deobfuscated
expressions, and a doubling of the average time taken for deobfus-
cation. We conclude that overall, the optimizations are significantly
effective in improving the performance of PROMBA.

Summary of the Results. The optimizations described in Sec-
tion 3.6 are essential for the effectiveness and efficiency of PROMBA.

6 DISCUSSION

We note the following opportunities for future improvements to
our technique.

First, starting with initial rules that are hard to be proven by the
SMT solver may address a potential attack on our approach. An

2363

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

adversary (e.g., a developer of an obfuscation tool) may subvert our
approach by utilizing rules that are correct but challenging to be
proven by SMT solvers. In our method, an SMT solver is employed to
determine the equivalence between a solution candidate proposed
by the synthesizer and the original obfuscated expression. However,
SMT solvers may struggle to prove equivalence between two expres-
sions if anyone involves certain complex (non-)polynomial MBAs
or a large number of variables. For instance, Z3 is unable to prove
the equivalence between (x Ay) X (x Vy) + (x A (=y)) X ((=x) Ay)
and x X y within an hour. If the adversary uses such rules for obfus-
cation, our technique may not be able to deobfuscate the expression
due to the bottleneck of the SMT solver. To address this issue, we
can start with initial rules including ones that are hard to be proven
by the SMT solver.

Second, our technique can be improved if an underlying SyGuS
solver can determine the unrealizability of SyGuS problems in the
quantified bitvector domain (i.e., the absence of a solution in the
search space). Our SyGusS problems encode the search for a smaller
equivalent expression for a given expression. Because the existing
SyGusS solvers are not able to determine the unrealizability of SyGuS
problems in the quantified bitvector domain, they may spend a long
time searching for a solution that does not exist. Meanwhile, the
SyGusS solver may also spend a long time searching for a solution if
the solution is complex. Therefore, users may be uncertain whether
the cause of SyGuS solver’s hang-ups is the complexity of the
solution, or the unrealizability of the problem. If the SyGuS solver
can efficiently determine the unrealizability of the problem, it will
be able to quickly give up on the unrealizable problems and focus
on the realizable ones, thereby improving the overall performance.

7 RELATED WORK

In this section, we discuss related work on term rewriting, program
synthesis, and MBA deobfuscation.

Term Rewriting. Term rewriting has been broadly used in pro-
gram transformation. Typical term rewriting systems depend on
a set of rewrite rules manually designed by domain experts. The
major drawback of this approach is that it is difficult to design
a set of rewrite rules that can cover all possible transformations.
This is also the case for MBA deobfuscation. SSPAM [18], a term
rewriting-based MBA deobfuscation tool, uses a set of rewrite rules
that are manually designed from various sources. Because of the
incompleteness of the rewrite rules, SSPAM often fails to deobfus-
cate MBA expressions obfuscated by state-of-the-art obfuscators
as shown in previous work [29, 39, 41]. To overcome this limita-
tion, we propose a novel approach that automatically learns rewrite
rules on the fly and applies them to deobfuscate MBA expressions.
Similar to our approach, program synthesis has been used to learn
rewrite rules for program optimization [6, 13, 24, 25, 37]. The major
difference between our approach and the previous synthesis-based
program optimization approaches is that we learn rewrite rules on
the fly while those approaches learn them offline. As shown in our
evaluation, our approach is more effective than the offline learning-
based approach because MBA obfuscators often use a large number
of rewrite rules all of which cannot be learned offline.

CCS *23, November 26-30, 2023, Copenhagen, Denmark

Program Synthesis. Over the the last decade, thanks to the stan-
dard SyGusS format [3] and the development of efficient solvers [7,
26, 42], program synthesis has been widely used in various ap-
plications. Deobfuscation of MBA expressions is also one of the
appealing applications of program synthesis. Syntia [10] and Xyn-
tia [31] use the Monte Carlo Tree Search (MCTS) algorithm and
QSynth [16] uses an enumerative search strategy for deobfuscating
MBA expressions. However, these approaches do not guarantee
the correctness of deobfuscation results by synthesizing deobfus-
cated programs from a limited set of input-output examples. Our
approach guarantees the correctness of deobfuscation results by
synthesizing programs semantically equivalent to the given MBA
expressions. In addition, our approach can leverage the state-of-the-
art general-purpose program synthesis techniques by formulating
the MBA deobfuscation problem as a SyGuS problem.

MBA Deobfuscation. As mentioned in Section 1, the previous
approaches for MBA deobfuscation suffer from their own limita-
tions. Arybo [22] transforms MBA expressions into bit-level ex-
pressions with only XOR and AND operators and then tries to
simplify the bit-level expressions. However, this approach leads to
a huge blowup in the size of the bit-level expressions, which makes
it difficult to deobfuscate large MBA expressions. Neureduce [19]
trains a neural network to deobfuscate MBA expressions. Given
the vast number of possible MBA obfuscation rules, it is difficult to
train a neural network that can cover all possible obfuscation rules.
Also, the approach cannot guarantee the correctness of deobfusca-
tion results. This is also the case for the previous synthesis-based
approaches [10, 16, 31]. Algebraic simplification-based MBA deob-
fuscation techniques targeting linear MBA expressions have been
proposed [29, 34]. These approaches are based on the algebraic
property that if two linear MBA expressions are semantically equiv-
alent for n-bit (n € N) input variables, they are also semantically
equivalent for 1-bit input variables and vice versa. Given a linear
MBA expression, they obtain a complete set of input-output behav-
iors of the expression by enumerating all possible combinations
of zeros and ones for all 1-bit input variables and evaluating the
expression for each combination. Then, a simpler equivalent expres-
sion from the obtained input-output examples is constructed. These
approaches are quite effective for linear MBA expressions, and our
method also leverages them for linear MBA expressions. However,
they are not applicable to a broader class of MBA expressions.
Recently, GAMBA, a more advanced algebraic simplification-based
MBA deobfuscation tool has been proposed [35]. GAMBA extends its
predecessor SIMBAD by introducing various hand-crafted algebraic
simplification rules to deobfuscate non-linear MBA expressions.
Although GamBa is efficient and effective, it is still limited to a
restricted category of MBA expressions where the supported op-
erators are limited to the logical operators A, V, =, and @ and the
arithmetic operators +, —, X (and the left shift operator in a limited
way). On the other hand, our approach can deobfuscate a much
broader class of MBA expressions, handling all operators in the the-
ory of fixed-width bit-vectors. In addition, relying on hand-crafted
rules in GAMBA makes it difficult to extend the tool to support a
broader class of MBA expressions. As an example, an MBA expres-
sion ((2xa) —(aAt))—((a—t) A (aVt)) cannot be deobfuscated

2364

Jaehyung Lee and Woosuk Lee

by GaMmBa because it is beyond the scope of its simplifcation rules.
On the contrary, our approach can deobfuscate it to (a—t) V (aV t)
thanks to the general-purpose program synthesis techniques.

8 CONCLUSION

In this paper, we presented a novel and versatile method for MBA
deobfuscation called PROMBA, which overcomes the limitations
of existing techniques by synergistically combining program syn-
thesis, term rewriting, and algebraic simplification methods. Our
method first simplifies linear MBA sub-expressions using an off-
the-shelf deobfuscator, then recursively simplifies non-linear sub-
expressions by synthesizing simpler sub-expressions and applying
the resulting rewrite rules to other sub-expressions, until no fur-
ther simplification is possible. We demonstrated the effectiveness
of the approach on a large number of deobfuscation problems from
various sources. The experimental results show that our method
outperforms existing the state-of-the-art deobfuscation method.

ACKNOWLEDGMENTS

We thank the reviewers for insightful comments. The first author
majors in Bio Artificial Intelligence. This work was supported by
the National Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) (No. 2021R1A5A1021944) and
Institute for Information & Communications Technology Planning
& Evaluation (IITP) grant funded by the Korea government (MSIT)
(No. 2022-0-00995).

REFERENCES

[1] [n.d.]. Irdeto Cloaked CA: a secure, flexible and cost-effective CA system. https:
//irdeto.com/video-entertainment/conditional-access-system/.

[n.d.]. The Tigress C Diversifier/Obfuscator. http://tigress.cs.arizona.edu/.
Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund
Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Em-
ina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In Formal
Methods in Computer-Aided Design (FMCAD ’13).

Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling Enumera-
tive Program Synthesis via Divide and Conquer. In Tools and Algorithms for the
Construction and Analysis of Systems, Axel Legay and Tiziana Margaria (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 319-336.

Franz Baader and Tobias Nipkow. 1998. Term Rewriting and All That. Cambridge
University Press, New York, NY, USA.

Sorav Bansal and Alex Aiken. 2006. Automatic Generation of Peephole Su-
peroptimizers. In Proceedings of the 12th International Conference on Architec-
tural Support for Programming Languages and Operating Systems (San Jose,
California, USA) (ASPLOS ’06). ACM, New York, NY, USA, 394-403. https:
//doi.org/10.1145/1168857.1168906

Shraddha Barke, Hila Peleg, and Nadia Polikarpova. 2020. Just-in-Time Learning
for Bottom-up Enumerative Synthesis. Proc. ACM Program. Lang. 4, OOPSLA,
Article 227 (nov 2020), 29 pages. https://doi.org/10.1145/3428295

Clark W. Barrett, Aaron Stump, and Cesare Tinelli. 2010. The SMT-LIB Standard
Version 2.0.

Fabrizio Biondi, Sebastien Josse, and Axel Legay. 2016. Bypassing Malware Ob-
fuscation with Dynamic Synthesis. https://ercim-news.ercim.eu/en106/special/
bypassing-malware-obfuscation- with-dynamic-synthesis.

Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Holz. 2017.
Syntia: Synthesizing the Semantics of Obfuscated Code. In 26th USENIX Security
Symposium (USENIX Security 17). USENIX Association, Vancouver, BC, 643
659. https://www.usenix.org/conference/usenixsecurity17/technical- sessions/
presentation/blazytko

Robert Brummayer and Armin Biere. 2009. Boolector: An Efficient SMT Solver
for Bit-Vectors and Arrays. In Tools and Algorithms for the Construction and
Analysis of Systems, Stefan Kowalewski and Anna Philippou (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 174-177.

Pierrick Brunet, Béatrice Creusillet, Adrien Guinet, and Juan Manuel Martinez.
2019. Epona and the Obfuscation Paradox: Transparent for Users and Developers,

=
&,

https://irdeto.com/video-entertainment/conditional-access-system/
https://irdeto.com/video-entertainment/conditional-access-system/
http://tigress.cs.arizona.edu/
https://doi.org/10.1145/1168857.1168906
https://doi.org/10.1145/1168857.1168906
https://doi.org/10.1145/3428295
https://ercim-news.ercim.eu/en106/special/bypassing-malware-obfuscation-with-dynamic-synthesis
https://ercim-news.ercim.eu/en106/special/bypassing-malware-obfuscation-with-dynamic-synthesis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/blazytko
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/blazytko

Simplifying Mixed Boolean-Arithmetic Obfuscation

a Pain for Reversers. In Proceedings of the 3rd ACM Workshop on Software Protec-
tion (London, United Kingdom) (SPRO’19). Association for Computing Machinery,
New York, NY, USA, 41-52. https://doi.org/10.1145/3338503.3357722

Sebastian Buchwald. 2015. Optgen: A Generator for Local Optimizations. In
Compiler Construction, Bjorn Franke (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 171-189.

Benjamin Caulfield, Markus N. Rabe, Sanjit A. Seshia, and Stavros Tripakis. 2015.
What’s Decidable about Syntax-Guided Synthesis? arXiv:1510.08393 [cs.LO]
C.S. Collberg, S. Martin, J. Myers, and B. Zimmerman. [n. d.]. Documentation
for arithmetic encodings in tigress. http://tigress.cs.arizona.edu/transformPage/
docs/encodeArithmetic.

Robin David, Luigi Coniglio, and Mariano Ceccato. 2020. QSynth - A Program
Synthesis based approach for Binary Code Deobfuscation. Proceedings 2020
Workshop on Binary Analysis Research (2020).

Leonardo De Moura and Nikolaj Bjorner. 2008. Z3: An Efficient SMT Solver. In
Proceedings of the Theory and Practice of Software, 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS 08). Springer-Verlag, Berlin, Heidelberg, 337-340.

Ninon Eyrolles, Louis Goubin, and Marion Videau. 2016. Defeating MBA-Based
Obfuscation. In Proceedings of the 2016 ACM Workshop on Software PROtection
(Vienna, Austria) (SPRO ’16). Association for Computing Machinery, New York,
NY, USA, 27-38. https://doi.org/10.1145/2995306.2995308

Weijie Feng, Binbin Liu, Dongpeng Xu, Qilong Zheng, and Yun Xu. 2020. NeuRe-
duce: Reducing Mixed Boolean-Arithmetic Expressions by Recurrent Neural
Network. In Findings of the Association for Computational Linguistics: EMNLP
2020. Association for Computational Linguistics, Online, 635-644. https:
//doi.org/10.18653/v1/2020.findings-emnlp.56

Vijay Ganesh and David L. Dill. 2007. A Decision Procedure for Bit-Vectors and
Arrays. In Computer Aided Verification, Werner Damm and Holger Hermanns
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 519-531.

Peter Garba and Matteo Favaro. 2019. SATURN - Software Deobfuscation Frame-
work Based On LLVM. In Proceedings of the 3rd ACM Workshop on Software
Protection (London, United Kingdom) (SPRO’19). Association for Computing
Machinery, New York, NY, USA, 27-38. https://doi.org/10.1145/3338503.3357721
Adrien Guinet, Ninon Eyrolles, and Marion Videau. 2016. Arybo: Manipula-
tion, Canonicalization and Identification of Mixed Boolean-Arithmetic Symbolic
Expressions. In GreHack 2016 (Proceedings of GreHack 2016). Grenoble, France.
https://hal.science/hal-01390528

Sumit Gulwani, Alex Polozov, and Rishabh Singh. 2017. Program Synthesis. Vol. 4.
NOW. 1-119 pages. https://www.microsoft.com/en-us/research/publication/
program-synthesis/

Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and
Alex Aiken. 2019. TASO: Optimizing Deep Learning Computation with Automatic
Generation of Graph Substitutions. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (Huntsville, Ontario, Canada) (SOSP '19). Association
for Computing Machinery, New York, NY, USA, 47-62. https://doi.org/10.1145/
3341301.3359630

DongKwon Lee, Woosuk Lee, Hakjoo Oh, and Kwangkeun Yi. 2020. Optimizing
Homomorphic Evaluation Circuits by Program Synthesis and Term Rewriting.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation (London, UK) (PLDI 2020). Association for Comput-
ing Machinery, New York, NY, USA, 503-518. https://doi.org/10.1145/3385412.
3385996

Woosuk Lee. 2021. Combining the top-down propagation and bottom-up enumer-
ation for inductive program synthesis. Proceedings of the ACM on Programming
Languages 5, POPL (2021), 1-28.

Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. 2018. Accelerating
Search-Based Program Synthesis Using Learned Probabilistic Models. In Proceed-
ings of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Philadelphia, PA, USA) (PLDI 2018). Association for Comput-
ing Machinery, New York, NY, USA, 436-449. https://doi.org/10.1145/3192366.
3192410

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Clifford Liem, Yuan Xiang Gu, and Harold Johnson. 2008. A Compiler-Based
Infrastructure for Software-Protection. In Proceedings of the Third ACM SIGPLAN
Workshop on Programming Languages and Analysis for Security (Tucson, AZ,
USA) (PLAS °08). Association for Computing Machinery, New York, NY, USA,
33-44. https://doi.org/10.1145/1375696.1375702

Binbin Liu, Junfu Shen, Jiang Ming, Qilong Zheng, Jing Li, and Dongpeng Xu. 2021.
MBA-Blast: Unveiling and Simplifying Mixed Boolean-Arithmetic Obfuscation.
In 30th USENIX Security Symposium (USENIX Security 21). USENIX Association,
1701-1718. https://www.usenix.org/conference/usenixsecurity21/presentation/
liu-binbin

MapleSoft. [n. d.]. The Essential Tool for Mathematics. https://www.maplesoft.
com/products/maple/.

Grégoire Menguy, Sébastien Bardin, Richard Bonichon, and Cauim de Souza
Lima. 2021. Search-Based Local Black-Box Deobfuscation: Understand, Improve
and Mitigate. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and

Communications Security (Virtual Event, Republic of Korea) (CCS "21). Association
for Computing Machinery, New York, NY, USA, 2513-2525. https://doi.org/10.

1145/3460120.3485250

Camille Mougey and Francis Gabriel. 2014. DRM Obfuscation Versus Auxiliary
Attacks. In REcon Conference.

Ninon Eyrolles. 2017. Obfuscation with Mixed Boolean-Arithmetic Expres-
sions: Reconstruction, Analysis and Simplification Tools. PhD. Université Paris
Saclay. https://blog.quarkslab.com/resources/2017-06-09-nouthese- soutenance/
thesis.pdf https://github.com/quarkslab/sspam/.

Benjamin Reichenwallner and Peter Meerwald-Stadler. 2022. Efficient Deob-
fuscation of Linear Mixed Boolean-Arithmetic Expressions. In Proceedings of
the 2022 ACM Workshop on Research on Offensive and Defensive Techniques in
the Context of Man At The End (MATE) Attacks (Los Angeles, CA, USA) (Check-
mate ’22). Association for Computing Machinery, New York, NY, USA, 19-28.
https://doi.org/10.1145/3560831.3564256

Benjamin Reichenwallner and Peter Meerwald-Stadler. 2023. Simpli-
fication of General Mixed Boolean-Arithmetic Expressions: GAMBA.
https://arxiv.org/abs/2305.06763. In Proceedings of the 2nd Workshop on
Robust Malware Analysis, WORMA’23, co-located with the 8th IEEE European
Symposium on Security and Privacy. IEEE, Delft, The Netherlands.

SageMath. [n.d.]. SageMath. http://www.sagemath.org/.

Raimondas Sasnauskas, Yang Chen, Peter Collingbourne, Jeroen Ketema, Jubi
Taneja, and John Regehr. 2017. Souper: A Synthesizing Superoptimizer. CoRR
abs/1711.04422 (2017). arXiv:1711.04422 http://arxiv.org/abs/1711.04422

Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic Superoptimiza-
tion. In Proceedings of the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating Systems (Houston, Texas,
USA) (ASPLOS ’13). Association for Computing Machinery, New York, NY, USA,
305-316. https://doi.org/10.1145/2451116.2451150

Moritz Schloegel, Tim Blazytko, Moritz Contag, Cornelius Aschermann, Julius
Basler, Thorsten Holz, and Ali Abbasi. 2022. Loki: Hardening Code Obfuscation
Against Automated Attacks. In 31st USENIX Security Symposium (USENIX Security
22). USENIX Association, Boston, MA, 3055-3073. https://www.usenix.org/
conference/usenixsecurity22/presentation/schloegel

Wolfram. [n.d.]. Wolfram Mathematica. http://www.wolfram.com/
mathematica/.

Dongpeng Xu, Binbin Liu, Weijie Feng, Jiang Ming, Qilong Zheng, Jing Li,
and Qiaoyan Yu. 2021. Boosting SMT Solver Performance on Mixed-Bitwise-
Arithmetic Expressions. In Proceedings of the 42nd ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implementation (Virtual,
Canada) (PLDI 2021). Association for Computing Machinery, New York, NY, USA,
651-664. https://doi.org/10.1145/3453483.3454068

Yongho Yoon, Woosuk Lee, and Kwangkeun Yi. 2023. Inductive Program Synthesis
via Iterative Forward-Backward Abstract Interpretation. Proceedings of the ACM
on Programming Languages 7, PLDI (2023), 1657-1681.

Yongxin Zhou, Alec Main, Yuan X. Gu, and Harold Johnson. 2007. Information
Hiding in Software with Mixed Boolean-Arithmetic Transforms. In Information
Security Applications, Sehun Kim, Moti Yung, and Hyung-Woo Lee (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 61-75.

https://doi.org/10.1145/3338503.3357722
https://arxiv.org/abs/1510.08393
http://tigress.cs.arizona.edu/transformPage/docs/encodeArithmetic
http://tigress.cs.arizona.edu/transformPage/docs/encodeArithmetic
https://doi.org/10.1145/2995306.2995308
https://doi.org/10.18653/v1/2020.findings-emnlp.56
https://doi.org/10.18653/v1/2020.findings-emnlp.56
https://doi.org/10.1145/3338503.3357721
https://hal.science/hal-01390528
https://www.microsoft.com/en-us/research/publication/program-synthesis/
https://www.microsoft.com/en-us/research/publication/program-synthesis/
https://doi.org/10.1145/3341301.3359630
https://doi.org/10.1145/3341301.3359630
https://doi.org/10.1145/3385412.3385996
https://doi.org/10.1145/3385412.3385996
https://doi.org/10.1145/3192366.3192410
https://doi.org/10.1145/3192366.3192410
https://doi.org/10.1145/1375696.1375702
https://www.usenix.org/conference/usenixsecurity21/presentation/liu-binbin
https://www.usenix.org/conference/usenixsecurity21/presentation/liu-binbin
https://www. maplesoft.com/products/maple/
https://www. maplesoft.com/products/maple/
https://doi.org/10.1145/3460120.3485250
https://doi.org/10.1145/3460120.3485250
https://blog.quarkslab.com/resources/2017-06-09-nouthese-soutenance/thesis.pdf
https://blog.quarkslab.com/resources/2017-06-09-nouthese-soutenance/thesis.pdf
https://doi.org/10.1145/3560831.3564256
http://www.sagemath.org/
https://arxiv.org/abs/1711.04422
http://arxiv.org/abs/1711.04422
https://doi.org/10.1145/2451116.2451150
https://www.usenix.org/conference/usenixsecurity22/presentation/schloegel
https://www.usenix.org/conference/usenixsecurity22/presentation/schloegel
http://www. wolfram.com/mathematica/
http://www. wolfram.com/mathematica/
https://doi.org/10.1145/3453483.3454068

	Abstract
	1 Introduction
	2 Background
	2.1 MBA Obfuscation
	2.2 Term Rewriting
	2.3 Syntax-Guided Synthesis

	3 Our Approach
	3.1 The Overall Algorithm
	3.2 The ChooseSubExpr Procedure
	3.3 The Synthesize Procedure
	3.4 The GeneralizeRule Procedure
	3.5 The ApplyRule Procedure
	3.6 Optimizations

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Effectiveness of ProMBA
	5.3 Comparison to the Baseline Tools
	5.4 Efficacy of On-the-fly Learning of Rewrite Rules
	5.5 Impact of the Underlying Synthesizer
	5.6 Efficacy of the Optimizations

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

